当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of TOPCon tunnel-IBC solar cells with screen-printed fire-through contacts by laser patterning
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.solmat.2020.110834
Puqun Wang , Ranjani Sridharan , Xin Ren Ng , Jian Wei Ho , Rolf Stangl

Abstract Interdigitated back contact (IBC) solar cells featuring passivated contacts are promising candidates to achieve record-efficiency single-junction silicon-based solar cells. However, they usually require processes that are not amenable for industrial mass production and involve great process complexity associated with patterning and alignment. In this work, we present a novel TOPCon tunnel-IBC solar cell architecture, minimizing the complexity of patterning and alignment. By adopting a local poly-Si(n+)/poly-Si(p+)/SiOx tunnel junction, this cell architecture only requires full-area deposition of various thin-film layers and is compatible with conventional fire-through screen printing. The cell architecture is realized by sequential laser patterning steps and hence no shadow masks are needed. As a critical building block, we develop a working poly-Si(n+)/(SiOx)/poly-Si(p+)/SiOx tunnel junction with implied open-circuit voltage of 727 mV and a tunnel resistivity of 0.52 Ω cm2. We also establish the required laser patterning and damage-removal processes. Finally, we demonstrate that both the electron-selective and hole-selective regions can be contacted by conventional high-temperature fire-through screen printing, hence being compatible with industrial solar cell processing. Using realistic input parameters measured on test samples, we demonstrate by computer simulation that the proposed TOPCon tunnel-IBC cells favour IBC geometry with small pitches up to the technological limit. Corresponding full device integration is currently ongoing.

中文翻译:

TOPCon 隧道-IBC 太阳能电池通过激光图案化丝网印刷火通触点的开发

摘要具有钝化触点的叉指背接触 (IBC) 太阳能电池是实现创纪录效率的单结硅基太阳能电池的有希望的候选者。然而,它们通常需要不适合工业大规模生产的工艺,并且涉及与图案化和对准相关的巨大工艺复杂性。在这项工作中,我们提出了一种新颖的 TOPCon 隧道-IBC 太阳能电池架构,最大限度地减少了图案化和对齐的复杂性。通过采用局部多晶硅(n+)/多晶硅(p+)/SiOx隧道结,这种电池架构只需要全面积沉积各种薄膜层,并与传统的烧穿丝网印刷兼容。单元结构是通过连续的激光图案化步骤实现的,因此不需要阴影掩模。作为一个关键的构建块,我们开发了一种有效的 poly-Si(n+)/(SiOx)/poly-Si(p+)/SiOx 隧道结,其隐含开路电压为 727 mV,隧道电阻率为 0.52 Ω cm2。我们还建立了所需的激光图案化和损伤去除工艺。最后,我们证明电子选择性和空穴选择性区域都可以通过传统的高温烧透丝网印刷接触,因此与工业太阳能电池加工兼容。使用在测试样品上测量的实际输入参数,我们通过计算机模拟证明所提出的 TOPCon 隧道-IBC 电池有利于具有小间距的 IBC 几何结构,达到技术极限。相应的全设备集成目前正在进行中。52 Ω cm2。我们还建立了所需的激光图案化和损伤去除工艺。最后,我们证明电子选择性和空穴选择性区域都可以通过传统的高温烧透丝网印刷接触,因此与工业太阳能电池加工兼容。使用在测试样品上测量的实际输入参数,我们通过计算机模拟证明所提出的 TOPCon 隧道-IBC 电池有利于具有小间距的 IBC 几何结构,达到技术极限。相应的全设备集成目前正在进行中。52 Ω cm2。我们还建立了所需的激光图案化和损伤去除工艺。最后,我们证明电子选择性和空穴选择性区域都可以通过传统的高温烧透丝网印刷接触,因此与工业太阳能电池加工兼容。使用在测试样品上测量的实际输入参数,我们通过计算机模拟证明所提出的 TOPCon 隧道-IBC 电池有利于具有小间距的 IBC 几何结构,达到技术极限。相应的全设备集成目前正在进行中。因此与工业太阳能电池加工兼容。使用在测试样品上测量的实际输入参数,我们通过计算机模拟证明所提出的 TOPCon 隧道-IBC 电池有利于具有小间距的 IBC 几何结构,达到技术极限。相应的全设备集成目前正在进行中。因此与工业太阳能电池加工兼容。使用在测试样品上测量的实际输入参数,我们通过计算机模拟证明所提出的 TOPCon 隧道-IBC 电池有利于具有小间距的 IBC 几何结构,达到技术极限。相应的全设备集成目前正在进行中。
更新日期:2021-01-01
down
wechat
bug