当前位置: X-MOL 学术J. Lumin. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale Optical Voltage Sensing in Biological Systems
Journal of Luminescence ( IF 3.6 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jlumin.2020.117719
Toon Goris , Daniel P. Langley , Paul R. Stoddart , Blanca del Rosal

Abstract Local electric fields modulate a variety of cellular processes and are particularly relevant in the nervous system. Signal propagation along an axon occurs through small (around 100 mV) rapid changes in the potential across the cell membrane. Experimental techniques capable of measuring voltage changes in cells, tissue, and animal models have been instrumental in understanding cell signalling in the nervous system. Optical approaches relying on fluorescent voltage sensors have emerged as a minimally invasive – and less technically demanding – alternative to traditional, electrode-based techniques. Combined with state-of-the-art optical microscopy techniques, luminescent voltage sensors allow voltage sensing at relevant timescales (sub-millisecond) and diffraction-limited spatial resolutions. Voltage-sensitive dyes and proteins are already well-established fluorescent voltage sensors, while semiconductor nanostructures and nitrogen vacancy-containing diamonds are attracting increasing attention due to their superior photoluminescent properties. In this review, we describe the working mechanism of the different classes of fluorescent voltage sensors, discuss their advantages and limitations, and compare their performance based on sensitivity and temporal resolution. Further, we discuss the more recent advances in optical voltage sensing and identify the knowledge gaps that need to be addressed for this technique to realize its full potential as a valid replacement to electrode-based sensing.

中文翻译:

生物系统中的纳米级光学电压传感

摘要 局部电场调节多种细胞过程,尤其与神经系统相关。信号沿轴突传播是通过跨细胞膜电位的微小(约 100 mV)快速变化发生的。能够测量细胞、组织和动物模型中电压变化的实验技术有助于理解神经系统中的细胞信号。依赖于荧光电压传感器的光学方法已经成为传统的基于电极的技术的一种微创且技术要求较低的替代方法。结合最先进的光学显微镜技术,发光电压传感器允许在相关时间尺度(亚毫秒)和衍射极限空间分辨率下进行电压检测。电压敏感染料和蛋白质已经是成熟的荧光电压传感器,而半导体纳米结构和含氮空位的钻石由于其优越的光致发光特性而引起越来越多的关注。在这篇综述中,我们描述了不同类型荧光电压传感器的工作机制,讨论了它们的优点和局限性,并根据灵敏度和时间分辨率比较了它们的性能。此外,我们讨论了光学电压传感的最新进展,并确定了该技术需要解决的知识差距,以实现其作为基于电极传感的有效替代品的全部潜力。而半导体纳米结构和含氮空位的金刚石由于其优异的光致发光性能而受到越来越多的关注。在这篇综述中,我们描述了不同类型荧光电压传感器的工作机制,讨论了它们的优点和局限性,并根据灵敏度和时间分辨率比较了它们的性能。此外,我们讨论了光学电压传感的最新进展,并确定了该技术需要解决的知识差距,以实现其作为基于电极传感的有效替代品的全部潜力。而半导体纳米结构和含氮空位的金刚石由于其优异的光致发光性能而引起越来越多的关注。在这篇综述中,我们描述了不同类型荧光电压传感器的工作机制,讨论了它们的优点和局限性,并根据灵敏度和时间分辨率比较了它们的性能。此外,我们讨论了光学电压传感的最新进展,并确定了该技术需要解决的知识差距,以实现其作为基于电极传感的有效替代品的全部潜力。并根据灵敏度和时间分辨率比较它们的性能。此外,我们讨论了光学电压传感的最新进展,并确定了该技术需要解决的知识差距,以实现其作为基于电极传感的有效替代品的全部潜力。并根据灵敏度和时间分辨率比较它们的性能。此外,我们讨论了光学电压传感的最新进展,并确定了该技术需要解决的知识差距,以实现其作为基于电极传感的有效替代品的全部潜力。
更新日期:2021-02-01
down
wechat
bug