当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of fins and inclined magnetic field in double lid-driven cavity with Cu–water nanofluid
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ijthermalsci.2020.106707
Shafqat Hussain , Muhammad Jamal , B. Pekmen Geridonmez

Abstract This study deals the influence of fins and inclined magnetic field with nanofluid in single lid-driven and double lid-driven cavities. The effect of fins length and distance between them is also given attention. A two dimensional system of partial differential equations has been discretized by employing Galerkin finite element method. A finite element method involving the cubic polynomials ( P 3 ) has been implemented to compute for velocity and temperature fields while the pressure is approximated by quadratic ( P 2 ) finite element space of functions. The system of discretized equations is simplified using the adaptive Newton’s method. The implemented finite element code is validated with an experimental study. Simulations are performed for various ranges of pertinent parameters such as distance among fins (between 0.2 and 0.5), Hartmann number (between 0 and 100), length of fins (between 0.25 and 0.50), Richardson numbers (between 0.01 and 1), number of fins (between 2 and 5) and magnetic field inclination (between 0° and 90°). Two cases of fins such as adiabatic and isothermal are also discussed in view of average Nusselt number. It is inferred that the fluid flow and heat transfer are significantly affected in the presence of fins comparing to the absence of fins. The smallest convective heat transfer is achieved when the distance between adiabatic fins is 0.3. Fluid flows faster at the angle γ = 9 0 ∘ than γ = 0 ∘ in both cases. Also, isotherms form larger red hot zones inside the cavity at γ = 9 0 ∘ . Isothermal fins have much more weakening effect on convective heat transfer than the adiabatic fins.

中文翻译:

翅片和倾斜磁场对铜水纳米流体双盖驱动腔的影响

摘要 本研究涉及纳米流体在单盖驱动和双盖驱动腔中的鳍片和倾斜磁场的影响。翅片长度和它们之间的距离的影响也受到关注。采用伽辽金有限元方法离散化了二维偏微分方程组。已经实施了涉及三次多项式 (P 3 ) 的有限元方法来计算速度和温度场,而压力由函数的二次 ( P 2 ) 有限元空间近似。使用自适应牛顿法简化了离散方程组。实施的有限元代码通过实验研究进行了验证。对各种相关参数范围进行模拟,例如鳍片之间的距离(0.2 和 0.5 之间),Hartmann 数(0 到 100 之间)、翅片长度(0.25 到 0.50 之间)、理查森数(0.01 到 1 之间)、翅片数(2 到 5 之间)和磁场倾角(0° 到 90° 之间)。考虑到平均努塞尔数,还讨论了绝热和等温翅片的两种情况。据推断,与不存在翅片相比,存在翅片时流体流动和传热受到显着影响。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。理查森数(介于 0.01 和 1 之间)、翅片数量(介于 2 和 5 之间)和磁场倾角(介于 0° 和 90° 之间)。考虑到平均努塞尔数,还讨论了绝热和等温翅片的两种情况。据推断,与不存在翅片相比,存在翅片时流体流动和传热受到显着影响。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。理查森数(介于 0.01 和 1 之间)、翅片数量(介于 2 和 5 之间)和磁场倾角(介于 0° 和 90° 之间)。考虑到平均努塞尔数,还讨论了绝热和等温翅片的两种情况。据推断,与不存在翅片相比,存在翅片时流体流动和传热受到显着影响。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。考虑到平均努塞尔数,还讨论了绝热和等温翅片的两种情况。据推断,与不存在翅片相比,存在翅片时流体流动和传热受到显着影响。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。考虑到平均努塞尔数,还讨论了绝热和等温翅片的两种情况。据推断,与不存在翅片相比,存在翅片时流体流动和传热受到显着影响。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。当绝热翅片之间的距离为 0.3 时,实现了最小的对流传热。在这两种情况下,流体在角度 γ = 9 0 ∘ 处比在 γ = 0 ∘ 处流动得更快。此外,等温线在 γ = 9 0 ∘ 处形成腔内更大的红热区。等温翅片对对流传热的减弱作用比绝热翅片大得多。
更新日期:2021-03-01
down
wechat
bug