当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network
Computer Methods in Applied Mechanics and Engineering ( IF 7.2 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.cma.2020.113492
Nanzhe Wang , Haibin Chang , Dongxiao Zhang

Abstract Subsurface flow problems usually involve some degree of uncertainty. Consequently, uncertainty quantification is commonly necessary for subsurface flow prediction. In this work, we propose a methodology for efficient uncertainty quantification for dynamic subsurface flow with a surrogate constructed by the Theory-guided Neural Network (TgNN). The TgNN here is specially designed for problems with stochastic parameters. In the TgNN, stochastic parameters, time and location comprise the input of the neural network, while the quantity of interest is the output. The neural network is trained with available simulation data, while being simultaneously guided by theory (e.g., the governing equation, boundary conditions, initial conditions, etc.) of the underlying problem. The trained neural network can predict solutions of subsurface flow problems with new stochastic parameters. With the TgNN surrogate, the Monte Carlo (MC) method can be efficiently implemented for uncertainty quantification. The proposed methodology is evaluated with two-dimensional dynamic saturated flow problems in porous medium. Numerical results show that the TgNN based surrogate can significantly improve the efficiency of uncertainty quantification tasks compared with simulation based implementation. Further investigations regarding stochastic fields with smaller correlation length, larger variance, changing boundary values and out-of-distribution variances are performed, and satisfactory results are obtained.

中文翻译:

通过理论引导的神经网络对动态地下流进行有效的不确定性量化

摘要 地下水流问题通常涉及一定程度的不确定性。因此,不确定性量化通常是地下流动预测所必需的。在这项工作中,我们提出了一种通过理论引导神经网络 (TgNN) 构建的代理对动态地下流进行有效不确定性量化的方法。这里的 TgNN 是专门为随机参数问题设计的。在 TgNN 中,随机参数、时间和位置构成了神经网络的输入,而感兴趣的数量是输出。神经网络使用可用的模拟数据进行训练,同时受到潜在问题的理论(例如,控制方程、边界条件、初始条件等)的指导。经过训练的神经网络可以使用新的随机参数预测地下流动问题的解决方案。使用 TgNN 代理,蒙特卡罗 (MC) 方法可以有效地用于不确定性量化。所提出的方法用多孔介质中的二维动态饱和流动问题进行了评估。数值结果表明,与基于模拟的实现相比,基于 TgNN 的代理可以显着提高不确定性量化任务的效率。进一步研究了相关长度较小、方差较大、边界值变化和分布外方差的随机场,得到了满意的结果。Monte Carlo (MC) 方法可以有效地用于不确定性量化。所提出的方法用多孔介质中的二维动态饱和流动问题进行了评估。数值结果表明,与基于模拟的实现相比,基于 TgNN 的代理可以显着提高不确定性量化任务的效率。进一步研究了相关长度较小、方差较大、边界值变化和分布外方差的随机场,得到了满意的结果。Monte Carlo (MC) 方法可以有效地用于不确定性量化。所提出的方法用多孔介质中的二维动态饱和流动问题进行了评估。数值结果表明,与基于模拟的实现相比,基于 TgNN 的代理可以显着提高不确定性量化任务的效率。进一步研究了相关长度较小、方差较大、边界值变化和分布外方差的随机场,得到了满意的结果。数值结果表明,与基于模拟的实现相比,基于 TgNN 的代理可以显着提高不确定性量化任务的效率。进一步研究了相关长度较小、方差较大、边界值变化和分布外方差的随机场,得到了满意的结果。数值结果表明,与基于模拟的实现相比,基于 TgNN 的代理可以显着提高不确定性量化任务的效率。进一步研究了相关长度较小、方差较大、边界值变化和分布外方差的随机场,得到了满意的结果。
更新日期:2021-01-01
down
wechat
bug