当前位置: X-MOL 学术Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sintering and deposition of homo- and heteronanoparticles of aluminum and nickel on aluminum (100) substrate
Chemical Physics ( IF 2.3 ) Pub Date : 2020-10-31 , DOI: 10.1016/j.chemphys.2020.111037
E. El koraychy , M. Meddad , M. Badawi , M. Mazroui

Nanoparticles are very attractive materials owing to their high chemical reactivity compared to conventional micron-sized particles due to their high surface area to volume ratio. In light of this, nanoparticles may provide enhanced energy release rates for explosive and propellant reactions. However, their performance depends strongly on their surface structure. Thereby, nanoparticle coalescence plays an important role as it determines the resultant structure of the active sites where for example catalytic reactions actually take place, i.e. facets, edges, vertices or protrusions. With this in mind, we conduct molecular dynamics simulations to investigate coalescence of two identical nanoparticles of Al and Ni (homo spheres) and two different nanoparticles Al-Ni (hetero spheres) and their deposition on an Al (1 0 0) substrate at various temperatures from 200 to 800 K using the embedded atom method. Radial distribution function, x-y plane projection, collapsing and spreading indexes are calculated to characterize the coalescence and surface deposition process. Our simulation results show that the degree of coalescence and deposition are strongly temperature dependent. The deposition rate increases with the temperature while the sintering and deposition of hetero nanoparticles is significant at lower temperatures than melting. This trend is important to develop a lead-free metal composite materials for the electrical interconnect material due to their low processing temperature.



中文翻译:

铝和镍的均方和异方粒子在铝(100)衬底上的烧结和沉积

由于与常规的微米级颗粒相比,纳米颗粒由于其高的表面积与体积之比而具有高的化学反应性,因此它们是非常有吸引力的材料。鉴于此,纳米颗粒可以为爆炸和推进剂反应提供增强的能量释放速率。但是,它们的性能在很大程度上取决于其表面结构。因此,纳米颗粒的聚结起着重要的作用,因为它决定了活性位点的合成结构,例如,实际上发生了催化反应的活性位点,即刻面,边缘,顶点或突起。考虑到这一点,我们进行分子动力学模拟,以研究两个相同的Al和Ni纳米粒子(同质球)和两个不同的纳米粒子Al-Ni(杂原子)的聚结及其在200至800的不同温度下在Al(1 0 0)基底上的沉积K使用嵌入式原子方法。计算径向分布函数,xy平面投影,塌陷和扩展指数以表征聚结和表面沉积过程。我们的模拟结果表明,聚结和沉积的程度与温度密切相关。沉积速率随温度增加而异质纳米颗粒的烧结和沉积在比熔融温度低的温度下很明显。

更新日期:2020-11-12
down
wechat
bug