当前位置: X-MOL 学术Plant Growth Regul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature
Plant Growth Regulation ( IF 4.2 ) Pub Date : 2020-11-01 , DOI: 10.1007/s10725-020-00675-4
Martino Schillaci , Borjana Arsova , Robert Walker , Penelope M. C. Smith , Kerstin A. Nagel , Ute Roessner , Michelle Watt

A non-invasive plant phenotyping platform, GrowScreen-PaGe , was used to resolve the dynamics of shoot and root growth of the model cereal Brachypodium ( Brachypodium distachyon Bd21-3) in response to the plant growth promoting (PGP) bacteria Azospirillum ( Azospirillum brasilense Sp245). Inoculated Brachypodium plants had greater early vigor and higher P use efficiency than non-inoculated Brachypodium at low P and low temperature conditions. Root systems were imaged non-invasively at eight time points and data combined with leaf area, shoot biomass and nutrient content from destructive subsamples at 7, 14 and 21 days after inoculation (DAI). Azospirillum colonisation of roots improved Brachypodium shoot and, to a greater degree, root growth in three independent experiments. Inoculation promoted P use efficiency in shoots but not P concentration or uptake, despite increased total root length. Longer roots in inoculated plants arose from twofold faster branch root growth but slower axile root growth, detected at 11 DAI. Analysis of the spatio-temporal phenotypes indicated that the effects of Azospirillum inoculation increased as shoot P concentration declined, but the magnitude depended on the time after inoculation and growth rate of branch roots compared to axile roots. High throughput plant phenotyping platforms allow the details of plant-microorganism symbioses to be resolved, offering insights into the timing of changes in different tissues to allow molecular mechanisms to be determined.

中文翻译:

在低磷和低温条件下接种固氮螺菌后模型谷物短柄草的芽和根生长的时间分辨率

使用非侵入性植物表型平台 GrowScreen-PaGe 来解析模型谷物 Brachypodium ( Brachypodium distachyon Bd21-3) 响应植物生长促进 (PGP) 细菌 Azospirillum ( Azospirillum brasilense) 的芽和根生长动态Sp245)。在低磷和低温条件下,接种的 Brachypodium 植物比未接种的 Brachypodium 具有更大的早期活力和更高的磷利用效率。在接种后 7、14 和 21 天(DAI),在八个时间点对根系进行非侵入性成像,并结合叶面积、芽生物量和来自破坏性子样本的营养成分的数据。在三个独立的实验中,固氮螺菌根的定植改善了 Brachypodium 的芽,并在更大程度上改善了根的生长。尽管总根长增加,但接种促进了芽中磷的利用效率,但不促进磷的浓度或吸收。在 11 DAI 检测到,接种植物中更长的根是由于分枝根生长快两倍,但轴根生长更慢。时空表型分析表明,固氮螺菌接种的影响随着地上部磷浓度的降低而增加,但其幅度取决于接种后的时间和与轴根相比分枝根的生长速度。高通量植物表型平台可以解析植物微生物共生的细节,提供对不同组织变化时间的洞察,从而确定分子机制。在 11 DAI 检测到,接种植物中更长的根是由于分枝根生长快两倍,但轴根生长更慢。时空表型分析表明,固氮螺菌接种的影响随着地上部磷浓度的降低而增加,但其幅度取决于接种后的时间和与轴根相比分枝根的生长速度。高通量植物表型平台可以解析植物微生物共生的细节,提供对不同组织变化时间的洞察,从而确定分子机制。在 11 DAI 检测到,接种植物中更长的根是由于分枝根生长快两倍,但轴根生长更慢。时空表型分析表明,固氮螺菌接种的影响随着地上部磷浓度的降低而增加,但其幅度取决于接种后的时间和与轴根相比分枝根的生长速度。高通量植物表型平台允许解析植物微生物共生的细节,提供对不同组织变化时间的洞察,从而确定分子机制。但与轴根相比,其大小取决于接种后的时间和分枝根的生长速度。高通量植物表型平台可以解析植物微生物共生的细节,提供对不同组织变化时间的洞察,从而确定分子机制。但与轴根相比,其大小取决于接种后的时间和分枝根的生长速度。高通量植物表型平台可以解析植物微生物共生的细节,提供对不同组织变化时间的洞察,从而确定分子机制。
更新日期:2020-11-01
down
wechat
bug