当前位置: X-MOL 学术Acta Physiol. Plant. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The positive contribution of iWUE to the resilience of Schrenk spruce ( Picea schrenkiana ) to extreme drought in the western Tianshan Mountains, China
Acta Physiologiae Plantarum ( IF 2.6 ) Pub Date : 2020-11-02 , DOI: 10.1007/s11738-020-03158-1
Guoju Wu , Xiaohong Liu , Tuo Chen , Guobao Xu , Bo Wang , Huhu Kang , Caijuan Li , Xiaomin Zeng

Drought-related forest growth declines are observed globally in main forest types, especially with repeatedly hot droughts. Therefore, quantifying forest resilience and identifying the factors driving resilience in response to extreme drought with the consideration of atmospheric CO2 fertilization is crucial for the accurate assessment of forest dynamics under current climate change, particularly for the widespread and climate-sensitive spruce forests in the arid Tianshan Mountains, China. Here, we explored the growth response of Schrenk spruce (Picea schrenkiana) to six extreme drought events since 1900, and investigated how tree resilience in pure stands is related to local drought intensity, cambial age (CA), and intrinsic water-use efficiency (iWUE). Specifically, we found that spruce trees had a mean resistance (Rt) value of less than 1, with iWUE contributing less to Rt variation. The results are in agreement with the drought-induced limitations on tree growth in response to increasing CO2, in spite of rising iWUE trends. However, increased iWUE has significant and positive impacts on the recovery (17%) and resilience (15%) of trees, suggesting that increased iWUE enhances the restoration of Schrenk spruce growth after extreme drought events. The growth resilience indices of Schrenk spruce showed that juvenile and adult trees exhibit different strategies to mitigate the drought influences. This study indicated that tree age, climate conditions, and variation in iWUE should be considered simultaneously in drought resilience evaluations to assess forest dynamics objectively in relation to climate change (i.e., drought) and propose appropriate forest management strategies.

更新日期:2020-11-02
down
wechat
bug