当前位置: X-MOL 学术IEEE Trans. Semicond. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a World Class Silicon Carbide Substrate Manufacturing Capability
IEEE Transactions on Semiconductor Manufacturing ( IF 2.7 ) Pub Date : 2020-11-01 , DOI: 10.1109/tsm.2020.3028036
J. D. Blevins

Silicon carbide (SiC) semiconductor substrates provide the foundation for revolutionary improvements in the cost, size, weight and performance of a broad range of military and commercial radio frequency (RF) and power switching devices. Due to the lack of a viable, native gallium nitride (GaN) substrate, semi-insulating (SI) SiC substrates are the substrate of choice for high power AlGaN/GaN High Electron Mobility Transistors (HEMTs) due to their near lattice-match to GaN, superior thermal conductivity and commercial availability. GaN has emerged as the technology of choice for RF power because of its superior output power capability compared to other semiconductors. Similarly, semi-conducting (N+) SiC substrates are required for fabrication of high voltage Schottky Diodes and Metal Oxide Semiconductor Field Effect Transistor (MOSFET) power switching devices. Critical to this realization is the availability of affordable, high quality, large diameter SI and N+ SiC substrates for production of GaN and SiC power semiconductors. SiC is unique in that bulk single crystals cannot be grown via traditional melt-based manufacturing processes such as Czochralski. Rather, a high temperature sublimation process is required. In the late 1980’s, pioneering physical vapor transport research taking place at North Carolina State University ultimately led to the formation of Cree Research and subsequently the wide bandgap semiconductor industry. U.S. Department of Defense investment in wide bandgap semiconductor development has easily exceeded $1B spawning the creation of an entirely new industry. During the early 1990’s, SiC physical vapor transport growth development was fraught with perceived insurmountable technical challenges associated with micropipes, polytype conversion, diameter expansion and crystalline defects. Despite these monumental crystal growth technology hurdles, SiC substrates are now manufactured at a cost and quality never thought possible. This article highlights more than 20 years of Air Force Research Laboratory (AFRL) sponsored development with II-VI aimed at positioning itself as a merchant, world-class manufacturer of SiC substrates.

中文翻译:

开发世界一流的碳化硅基板制造能力

碳化硅 (SiC) 半导体衬底为各种军用和商用射频 (RF) 和功率开关设备的成本、尺寸、重量和性能的革命性改进奠定了基础。由于缺乏可行的原生氮化镓 (GaN) 衬底,半绝缘 (SI) SiC 衬底是高功率 AlGaN/GaN 高电子迁移率晶体管 (HEMT) 的首选衬底,因为它们与GaN,卓越的导热性和商业可用性。GaN 已成为射频功率的首选技术,因为与其他半导体相比,它具有卓越的输出功率能力。相似地,制造高压肖特基二极管和金属氧化物半导体场效应晶体管 (MOSFET) 功率开关器件需要半导体 (N+) SiC 衬底。实现这一目标的关键是提供用于生产 GaN 和 SiC 功率半导体的经济实惠、高质量、大直径的 SI 和 N+ SiC 衬底。SiC 的独特之处在于无法通过传统的基于熔体的制造工艺(如直拉)来生长块状单晶。相反,需要高温升华过程。在 1980 年代后期,北卡罗来纳州立大学进行的开创性物理蒸汽传输研究最终导致了 Cree Research 的形成,随后形成了宽带隙半导体行业。我们 国防部在宽带隙半导体开发方面的投资轻松超过了 10 亿美元,催生了一个全新的行业。在 1990 年代初期,SiC 物理气相传输生长的发展充满了与微管、多型转换、直径膨胀和晶体缺陷相关的不可克服的技术挑战。尽管存在这些巨大的晶体生长技术障碍,但现在制造 SiC 衬底的成本和质量从未被认为是可能的。本文重点介绍了 20 多年来空军研究实验室 (AFRL) 赞助的 II-VI 开发,旨在将自己定位为 SiC 衬底的商业、世界级制造商。SiC 物理蒸汽传输生长的发展充满了与微管、多型转换、直径膨胀和晶体缺陷相关的不可克服的技术挑战。尽管存在这些巨大的晶体生长技术障碍,但现在制造 SiC 衬底的成本和质量从未想象过。本文重点介绍了 20 多年来空军研究实验室 (AFRL) 赞助的 II-VI 开发,旨在将自己定位为 SiC 衬底的商业、世界级制造商。SiC 物理气相传输生长的发展充满了与微管、多型转换、直径膨胀和晶体缺陷相关的不可克服的技术挑战。尽管存在这些巨大的晶体生长技术障碍,但现在制造 SiC 衬底的成本和质量从未被认为是可能的。本文重点介绍了 20 多年来空军研究实验室 (AFRL) 赞助的 II-VI 开发,旨在将自己定位为 SiC 衬底的商业、世界级制造商。
更新日期:2020-11-01
down
wechat
bug