当前位置: X-MOL 学术ACM Trans. Des. Autom. Electron. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Leakage-Aware Dynamic Thermal Management of 3D Memories
ACM Transactions on Design Automation of Electronic Systems ( IF 1.4 ) Pub Date : 2020-10-23 , DOI: 10.1145/3419468
Lokesh Siddhu 1 , Rajesh Kedia 1 , Preeti Ranjan Panda 1
Affiliation  

3D memory systems offer several advantages in terms of area, bandwidth, and energy efficiency. However, thermal issues arising out of higher power densities have limited their widespread use. While prior works have looked at reducing dynamic power through reduced memory accesses, in these memories, both leakage and dynamic power consumption are comparable. Furthermore, as the temperature rises, the leakage power increases, creating a thermal-leakage loop. We study the impact of leakage power on 3D memory temperature and propose turning OFF specific memory channels to meet thermal constraints. Data is migrated to a 2D memory before closing a 3D channel. We introduce an analytical model to assess the 2D memory delay and use the model to guide data migration decisions. The above strategy is referred to as FastCool and provides an improvement of 22%, 19%, and 32% on average (up to 57%, 72%, and 82%) in performance, memory energy, and energy-delay product (EDP), respectively, on different workloads consisting of SPEC CPU2006 benchmarks. We further propose a thermal management strategy named Energy-Efficient FastCool (EEFC) , which improves upon FastCool by selecting the channels to be closed by considering temperature, leakage, access rate, and position of various 3D memory channels at runtime. Our experiments demonstrate that EEFC leads to an additional improvement of up to 30%, 30%, and 51% in performance, memory energy, and EDP compared to FastCool. Finally, we analyze the effects of process variations on the efficiency of the proposed FC and EEFC strategies. Variation in the manufacturing process causes changes in the leakage power and temperature profile. Since EEFC considers both while selecting channels for closure, it is more resilient to process variations and achieves a lower application execution time and memory energy compared to FastCool.

中文翻译:

3D 存储器的泄漏感知动态热管理

3D 存储系统在面积、带宽和能源效率方面具有多种优势。然而,由更高功率密度引起的热问题限制了它们的广泛使用。虽然先前的工作已经着眼于通过减少内存访问来降低动态功耗,但在这些存储器中,泄漏和动态功耗都是相当的。此外,随着温度升高,泄漏功率增加,形成热泄漏回路。我们研究了泄漏功率对 3D 内存温度的影响,并建议关闭特定的内存通道以满足热限制。在关闭 3D 通道之前将数据迁移到 2D 内存。我们引入了一个分析模型来评估 2D 内存延迟,并使用该模型来指导数据迁移决策。上述策略称为快速冷却并在不同的工作负载上分别提供 22%、19% 和 32%(高达 57%、72% 和 82%)的性能、内存能量和能量延迟积 (EDP) 平均改进,包括SPEC CPU2006 基准测试。我们进一步提出了一种热管理策略,名为节能快速冷却 (EEFC),通过在运行时考虑温度、泄漏、访问速率和各种 3D 内存通道的位置来选择要关闭的通道,从而改进了 FastCool。我们的实验表明,与 FastCool 相比,EEFC 在性能、内存能量和 EDP 方面额外提高了 30%、30% 和 51%。最后,我们分析了工艺变化对所提出的 FC 和 EEFC 策略效率的影响。制造过程的变化会导致泄漏功率和温度曲线的变化。由于 EEFC 在选择关闭通道时同时考虑了这两种情况,因此与 FastCool 相比,它对过程变化更具弹性,并实现了更低的应用程序执行时间和内存能量。
更新日期:2020-10-23
down
wechat
bug