当前位置: X-MOL 学术J. Neurotrauma › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pulsed Electromagnetic Fields Ameliorate Skeletal Deterioration in Bone Mass, Microarchitecture, and Strength by Enhancing Canonical Wnt Signaling-Mediated Bone Formation in Rats with Spinal Cord Injury
Journal of Neurotrauma ( IF 4.2 ) Pub Date : 2021-02-26 , DOI: 10.1089/neu.2020.7296
Xi Shao 1 , Zedong Yan 1 , Dan Wang 2 , Yongqing Yang 1 , Yuanjun Ding 1 , Erping Luo 1 , Da Jing 1 , Jing Cai 1, 3
Affiliation  

Spinal cord injury (SCI) leads to extensive bone loss and high incidence of low-energy fractures. Pulsed electromagnetic fields (PEMF) treatment, as a non-invasive biophysical technique, has proven to be efficient in promoting osteogenesis. The potential osteoprotective effect and mechanism of PEMF on SCI-related bone deterioration, however, remain unknown. The spinal cord of rats was transected at vertebral level T12 to induce SCI. Thirty rats were assigned to the control, SCI, and SCI+PEMF groups (n = 10). One week after surgery, the SCI+PEMF rats were subjected to PEMF (2.0 mT, 15 Hz, 2 h/day) for eight weeks. Micro-computed tomography results showed that PEMF significantly ameliorated trabecular and cortical bone microarchitecture deterioration induced by SCI. Three-point bending and nanoindentation assays revealed that PEMF significantly improved bone mechanical properties in SCI rats. Serum biomarker and bone histomorphometric analyses demonstrated that PEMF enhanced bone formation, as evidenced by significant increase in serum osteocalcin and P1NP, mineral apposition rate, and osteoblast number on bone surface. The PEMF had no impact, however, on serum bone-resorbing cytokines (TRACP 5b and CTX-1) or osteoclast number on bone surface. The PEMF also attenuated SCI-induced negative changes in osteocyte morphology and osteocyte survival. Moreover, PEMF significantly increased skeletal expression of canonical Wnt ligands (Wnt1 and Wnt10b) and stimulated their downstream p-GSK3β and β-catenin expression in SCI rats. This study demonstrates that PEMF can mitigate the detrimental consequence of SCI on bone quantity/quality, which might be associated with canonical Wnt signaling-mediated bone formation, and reveals that PEMF may be a promising biophysical approach for resisting osteopenia/osteoporosis after SCI in clinics.

中文翻译:

脉冲电磁场​​通过增强脊髓损伤大鼠典型 Wnt 信号介导的骨形成来改善骨量、微结构和强度的骨骼退化

脊髓损伤 (SCI) 导致广泛的骨质流失和低能量骨折的高发生率。脉冲电磁场​​ (PEMF) 治疗作为一种非侵入性生物物理技术,已被证明可有效促进成骨。然而,PEMF 对 SCI 相关骨退化的潜在骨保护作用和机制仍然未知。在T12椎体水平横切大鼠脊髓以诱导SCI。将 30 只大鼠分配到对照组、SCI 和 SCI+PEMF 组(n = 10)。手术后一周,SCI+PEMF 大鼠接受 PEMF(2.0 mT,15 Hz,2 小时/天)八周。微型计算机断层扫描结果表明,PEMF 显着改善了 SCI 引起的骨小梁和皮质骨微结构恶化。三点弯曲和纳米压痕试验表明,PEMF 显着改善了 SCI 大鼠的骨力学性能。血清生物标志物和骨组织形态学分析表明,PEMF 增强了骨形成,血清骨钙素和 P1NP、矿物质沉积率和骨表面成骨细胞数量显着增加就证明了这一点。然而,PEMF 对血清骨吸收细胞因子(TRACP 5b 和 CTX-1)或骨表面的破骨细胞数量没有影响。PEMF 还减弱了 SCI 引起的骨细胞形态和骨细胞存活的负面变化。此外,PEMF 显着增加经典 Wnt 配体(Wnt1 和 Wnt10b)的骨骼表达,并刺激其下游 p-GSK3β 和 β-连环蛋白在 SCI 大鼠中的表达。本研究表明,PEMF 可以减轻 SCI 对骨数量/质量的不利影响,这可能与经典 Wnt 信号介导的骨形成有关,并表明 PEMF 可能是一种有前途的生物物理方法,可在临床 SCI 后抵抗骨质减少/骨质疏松症.
更新日期:2021-03-08
down
wechat
bug