当前位置: X-MOL 学术J. Renew. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Joint optimization of the number, type and layout of wind turbines for a new offshore wind farm
Journal of Renewable and Sustainable Energy ( IF 2.5 ) Pub Date : 2020-09-01 , DOI: 10.1063/5.0020204
Jinhui Zhang 1 , Yuewen Jiang 1
Affiliation  

Prominent problems, including the high investment cost and limited generation revenue of offshore wind farms, are of concern. To tackle these problems, a bi-level model is proposed, whose upper level represents the offshore wind farm optimization for the target of maximizing the profit, and the lower level represents the day-ahead market clearing with the participation of an offshore wind farm. In the upper level, the number, type, and coordinates of wind turbines are simultaneously optimized on the premise of the determined sea area. The layout of an offshore wind farm in irregular sea areas can be obtained by constructing specific penalty functions. In the lower level, under different wind conditions and load, the day-ahead market with the goal of maximizing social welfare is cleared, and the cleared wind power and local marginal prices of an offshore wind farm are provided for the upper level model. Finally, the optimal number, type, and coordinates of wind turbines are obtained by solving the two-layer model. In a rectangular planned sea area, the bi-level optimization model is successfully applied. The test results show that when 27 wind turbines with a rated capacity of 6.45 MW are placed in the planned sea area, the annual investment profit reaches the maximum value of 22.6 × 106 euros. When the optimized layout of an offshore wind farm is used, the power deviation of 67% wind turbines caused by the wake effect can be controlled within 7%, which verifies that the optimized layout plays a role in reducing the wake effect.

中文翻译:

新建海上风电场风机数量、类型和布局的联合优化

海上风电场投资成本高、发电收入有限等突出问题值得关注。针对这些问题,提出了一种双层模型,其上层代表以利润最大化为目标的海上风电场优化,下层代表海上风电场参与的日前市场出清。在上层,在确定海域的前提下,同时优化风力发电机的数量、类型和坐标。通过构造特定的惩罚函数,可以得到不规则海域海上风电场的布局。在下层,在不同的风况和负荷下,以社会福利最大化为目标的日前市场出清,并为上层模型提供海上风电场的净风电和当地边际价格。最后,通过求解两层模型,得到最优的风力机数量、类型和坐标。在矩形规划海域,双层优化模型成功应用。试验结果表明,在规划海域放置27台额定容量为6.45 MW的风力发电机组时,年投资利润最高可达22.6×106欧元。采用海上风电场优化布局时,尾流效应引起的67%风电机组功率偏差可控制在7%以内,验证了优化布局对降低尾流效应起到了一定的作用。通过求解两层模型得到风力机的坐标和坐标。在矩形规划海域,双层优化模型成功应用。试验结果表明,在规划海域放置27台额定容量为6.45 MW的风力发电机组时,年投资利润最高可达22.6×106欧元。采用海上风电场优化布局时,尾流效应引起的67%风电机组功率偏差可控制在7%以内,验证了优化布局对降低尾流效应起到了一定的作用。通过求解两层模型得到风力机的坐标和坐标。在矩形规划海域,双层优化模型成功应用。试验结果表明,在规划海域放置27台额定容量为6.45 MW的风力发电机组时,年投资利润最高可达22.6×106欧元。采用海上风电场优化布局时,尾流效应引起的67%风电机组功率偏差可控制在7%以内,验证了优化布局对降低尾流效应起到了一定的作用。规划海域部署45兆瓦,年投资利润最高可达22.6×106欧元。采用海上风电场优化布局时,尾流效应引起的67%风电机组功率偏差可控制在7%以内,验证了优化布局对降低尾流效应起到了一定的作用。规划海域部署45兆瓦,年投资利润最高可达22.6×106欧元。采用海上风电场优化布局时,尾流效应引起的67%风电机组功率偏差可控制在7%以内,验证了优化布局对降低尾流效应起到了一定的作用。
更新日期:2020-09-01
down
wechat
bug