当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physics of High-Charge Electron Beams in Laser-Plasma Wakefields
Physical Review X ( IF 12.5 ) Pub Date : 2020-10-21 , DOI: 10.1103/physrevx.10.041015
J. Götzfried , A. Döpp , M. F. Gilljohann , F. M. Foerster , H. Ding , S. Schindler , G. Schilling , A. Buck , L. Veisz , S. Karsch

Laser wakefield acceleration (LWFA) and its particle-driven counterpart, particle or plasma wakefield acceleration (PWFA), are commonly treated as separate, though related, branches of high-gradient plasma-based acceleration. However, novel proposed schemes are increasingly residing at the interface of both concepts where the understanding of their interplay becomes crucial. Here, we present a comprehensive study of this regime, which we may term laser-plasma wakefields. Using datasets of hundreds of shots, we demonstrate the influence of beam loading on the spectral shape of electron bunches. Similar results are obtained using both 100-TW-class and few-cycle lasers, highlighting the scale invariance of the involved physical processes. Furthermore, we probe the interplay of dual electron bunches in the same or in two subsequent plasma periods under the influence of beam loading. We show that, with decreasing laser intensity, beam loading transitions to a beam-dominated regime, where the first bunch acts as the main driver of the wakefield. This transition is evidenced experimentally by a varying acceleration of a low-energy witness beam with respect to the charge of a high-energy drive beam in a spatially separate gas target. Our results also present an important step in the development of LWFA using controlled injection in a shock front. The electron beams in this study reach record performance in terms of laser-to-beam energy transfer efficiency (up to 10%), spectral charge density (regularly exceeding 10pCMeV1), and angular charge density (beyond 300pCμsr1 at 220 MeV). We provide an experimental scaling for the accelerated charge per terawatt (TW) of laser power, which approaches 2 nC at 300 TW. With the expanding availability of petawatt-class (PW) lasers, these beam parameters will become widely accessible. Thus, the physics of laser-plasma wakefields is expected to become increasingly relevant, as it provides new paths toward low-emittance beam generation for future plasma-based colliders or light sources.

中文翻译:

激光等离子体韦克场中高电荷电子束的物理学

激光尾波场加速(LWFA)及其粒子驱动的对应粒子或等离子体尾波场加速(PWFA)通常被视为独立的(尽管相关)高梯度基于等离子体的加速分支。然而,新颖的提议方案越来越多地存在于两个概念的接口上,在这两个接口之间,对其相互作用的理解变得至关重要。在这里,我们提出了对该方案的全面研究,我们可以将其称为激光等离子体唤醒场。使用数百个镜头的数据集,我们证明了束负载对电子束光谱形状的影响。使用100-TW级激光器和少周期激光器可获得相似的结果,突出了所涉及物理过程的尺度不变性。此外,我们研究了在电子束载荷的影响下,在相同或两个后续等离子体周期中双电子束的相互作用。我们表明,随着激光强度的降低,光束负载过渡到以光束为主的状态,其中第一束充当尾波场的主要驱动力。通过在空间上分离的气体目标中低能目击光束相对于高能驱动光束的电荷变化的加速度,可以通过实验证明这种过渡。我们的结果也显示了在冲击前线中使用受控注射开发LWFA​​的重要步骤。这项研究中的电子束在激光到束的能量传输效率(高达10%),光谱电荷密度(通常超过 光束载荷过渡到以光束为主的状态,其中第一束充当尾场的主要驱动力。通过在空间上分离的气体目标中低能目击光束相对于高能驱动光束的电荷变化的加速度,可以通过实验证明这种过渡。我们的结果也显示了在冲击前线中使用受控注射进行LWFA开发的重要步骤。这项研究中的电子束在激光到束的能量传输效率(高达10%),光谱电荷密度(通常超过 光束载荷过渡到以光束为主的状态,其中第一束充当尾场的主要驱动力。通过在空间上分开的气体目标中低能目击光束相对于高能驱动光束的电荷变化的加速度,可以通过实验证明这种过渡。我们的结果也显示了在冲击前线中使用受控注射进行LWFA开发的重要步骤。这项研究中的电子束在激光到束的能量传输效率(高达10%),光谱电荷密度(通常超过 通过在空间上分开的气体目标中低能目击光束相对于高能驱动光束的电荷变化的加速度,可以通过实验证明这种过渡。我们的结果也显示了在冲击前线中使用受控注射进行LWFA开发的重要步骤。这项研究中的电子束在激光到束的能量传输效率(高达10%),光谱电荷密度(通常超过 通过在空间上分离的气体目标中低能目击光束相对于高能驱动光束的电荷变化的加速度,可以通过实验证明这种过渡。我们的结果也显示了在冲击前线中使用受控注射进行LWFA开发的重要步骤。这项研究中的电子束在激光到束的能量传输效率(高达10%),光谱电荷密度(通常超过10电脑病毒-1个)和角电荷密度(超过 300电脑μsr-1个在220 MeV)。我们为激光功率的每太瓦(TW)加速电荷提供了实验标度,在300 TW下接近2 nC。随着千兆瓦级(PW)激光器的可用性不断扩展,这些光束参数将变得越来越容易获得。因此,预计激光等离子体尾波场的物理学将变得越来越重要,因为它为未来的基于等离子体的对撞机或光源提供了产生低发射光束的新途径。
更新日期:2020-10-30
down
wechat
bug