当前位置: X-MOL 学术J. Plasma Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multidimensional Iterative Filtering: a new approach for investigating plasma turbulence in numerical simulations
Journal of Plasma Physics ( IF 2.5 ) Pub Date : 2020-10-21 , DOI: 10.1017/s0022377820001221
Emanuele Papini , Antonio Cicone , Mirko Piersanti , Luca Franci , Petr Hellinger , Simone Landi , Andrea Verdini

Turbulent space and astrophysical plasmas exhibit a complex dynamics, which involves nonlinear coupling across different temporal and spatial scales. There is growing evidence that impulsive events, such as magnetic reconnection instabilities, lead to a spatially localized enhancement of energy dissipation, thus speeding up the energy transfer at small scales. Capturing such a diverse dynamics is challenging. Here, we employ the Multidimensional Iterative Filtering (MIF) method, a novel technique for the analysis of non-stationary multidimensional signals. Unlike other traditional methods (e.g. based on Fourier or wavelet decomposition), MIF does not require any previous assumption on the functional form of the signal to be identified. Using MIF, we carry out a multiscale analysis of Hall-magnetohydrodynamic (HMHD) and hybrid particle-in-cell (HPIC) numerical simulations of decaying plasma turbulence. The results assess the ability of MIF to spatially identify and separate the different scales (the MHD inertial range, the sub-ion kinetic and the dissipation scales) of the plasma dynamics. Furthermore, MIF decomposition allows localized current structures to be detected and their contribution to the statistical and spectral properties of turbulence to be characterized. Overall, MIF arises as a very promising technique for the study of turbulent plasma environments.

中文翻译:

多维迭代滤波:一种在数值模拟中研究等离子体湍流的新方法

湍流空间和天体物理等离子体表现出复杂的动力学,其中涉及跨不同时间和空间尺度的非线性耦合。越来越多的证据表明,磁重联不稳定性等脉冲事件会导致能量耗散的空间局部增强,从而加速小尺度的能量转移。捕捉如此多样化的动态具有挑战性。在这里,我们采用多维迭代滤波 (MIF) 方法,这是一种分析非平稳多维信号的新技术。与其他传统方法(例如基于傅立叶或小波分解)不同,MIF 不需要对要识别的信号的函数形式进行任何先前的假设。使用 MIF,我们对衰减等离子体湍流的霍尔磁流体动力学 (HMHD) 和混合粒子单元 (HPIC) 数值模拟进行了多尺度分析。结果评估了 MIF 在空间上识别和分离等离子体动力学的不同尺度(MHD 惯性范围、亚离子动力学和耗散尺度)的能力。此外,MIF 分解允许检测局部电流结构并表征它们对湍流的统计和光谱特性的贡献。总体而言,MIF 是研究湍流等离子体环境的一种非常有前途的技术。等离子体动力学的亚离子动力学和耗散尺度)。此外,MIF 分解允许检测局部电流结构并表征它们对湍流的统计和光谱特性的贡献。总体而言,MIF 是研究湍流等离子体环境的一种非常有前途的技术。等离子体动力学的亚离子动力学和耗散尺度)。此外,MIF 分解允许检测局部电流结构并表征它们对湍流的统计和光谱特性的贡献。总体而言,MIF 是研究湍流等离子体环境的一种非常有前途的技术。
更新日期:2020-10-21
down
wechat
bug