当前位置: X-MOL 学术Bull. Aust. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A NOTE ON JEŚMANOWICZ’ CONJECTURE CONCERNING NONPRIMITIVE PYTHAGOREAN TRIPLES
Bulletin of the Australian Mathematical Society ( IF 0.7 ) Pub Date : 2020-10-21 , DOI: 10.1017/s0004972720001148
YASUTSUGU FUJITA , MAOHUA LE

Jeśmanowicz conjectured that $(x,y,z)=(2,2,2)$ is the only positive integer solution of the equation $(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$ , where n is a positive integer and f, g are positive integers such that $f>g$ , $\gcd (\kern1.5pt f,g)=1$ and $f \not \equiv g\pmod 2$ . Using Baker’s method, we prove that: (i) if $n>1$ , $f \ge 98$ and $g=1$ , then $(*)$ has no positive integer solutions $(x,y,z)$ with $x>z>y$ ; and (ii) if $n>1$ , $f=2^rs^2$ and $g=1$ , where r, s are positive integers satisfying $(**)\; 2 \nmid s$ and $s<2^{r/2}$ , then $(*)$ has no positive integer solutions $(x,y,z)$ with $y>z>x$ . Thus, Jeśmanowicz’ conjecture is true if $f=2^rs^2$ and $g=1$ , where r, s are positive integers satisfying $(**)$ .

中文翻译:

关于 JEŚMANOWICZ 关于非本原毕达哥拉斯三元组猜想的注释

Jeśmanowicz 推测 $(x,y,z)=(2,2,2)$ 是方程的唯一正整数解 $(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$ , 在哪里n是一个正整数并且F,G是正整数,使得 $f>g$ , $\gcd (\kern1.5pt f,g)=1$ $f \not \equiv g\pmod 2$ . 使用贝克的方法,我们证明:(i)如果 $n>1$ , $f \ge 98$ $g=1$ , 然后 $(*)$ 没有正整数解 $(x,y,z)$ $x>z>y$ ; (ii) 如果 $n>1$ , $f=2^rs^2$ $g=1$ , 在哪里r,s是满足的正整数 $(**)\; 2 \n中美元 $s<2^{r/2}$ , 然后 $(*)$ 没有正整数解 $(x,y,z)$ $y>z>x$ . 因此,Jeśmanowicz 的猜想是正确的,如果 $f=2^rs^2$ $g=1$ , 在哪里r,s是满足的正整数 $(**)$ .
更新日期:2020-10-21
down
wechat
bug