当前位置: X-MOL 学术Commun. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-distance coupling and energy transfer between exciton states in magnetically controlled microcavities
Communications Materials Pub Date : 2020-10-30 , DOI: 10.1038/s43246-020-00079-x
Maciej Ściesiek , Krzysztof Sawicki , Wojciech Pacuski , Kamil Sobczak , Tomasz Kazimierczuk , Andrzej Golnik , Jan Suffczyński

Coupling of quantum emitters in a semiconductor relies, generally, on short-range dipole-dipole or electronic exchange type interactions. Consistently, energy transfer between exciton states, that is, electron-hole pairs bound by Coulomb interaction, is limited to distances of the order of 10 nm. Here, we demonstrate polariton-mediated coupling and energy transfer between excitonic states over a distance exceeding 2 μm. We accomplish this by coupling quantum well-confined excitons through the delocalized mode of two coupled optical microcavities. Use of magnetically doped quantum wells enables us to tune the confined exciton energy by the magnetic field and in this way to control the spatial direction of the transfer. Such controlled, long-distance interaction between coherently coupled quantum emitters opens possibilities of a scalable implementation of quantum networks and quantum simulators based on solid-state, multi-cavity systems.



中文翻译:

磁控微腔中激子态之间的长距离耦合和能量转移

半导体中量子发射器的耦合通常依赖于短距离偶极-偶极或电子交换类型的相互作用。一致地,激子状态之间的能量转移,即受库仑相互作用限制的电子-空穴对,被限制在10 nm数量级的距离内。在这里,我们证明了在超过的距离内,激子态之间的极化子介导的耦合和能量转移米 我们通过两个耦合的光学微腔的离域模式耦合量子约束激子来实现此目的。磁性掺杂量子阱的使用使我们能够通过磁场来调节受限的激子能量,并以此方式控制转移的空间方向。相干耦合的量子发射器之间的这种受控的长距离相互作用为基于固态多腔系统的量子网络和量子模拟器的可伸缩实现提供了可能性。

更新日期:2020-10-30
down
wechat
bug