当前位置: X-MOL 学术Adv. Phys. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
State-to-state dissociative photoionization of molecular nitrogen: the full story
Advances in Physics: X ( IF 6 ) Pub Date : 2020-10-23 , DOI: 10.1080/23746149.2020.1831955
T. Ayari 1, 2 , M. Desouter-Lecomte 3 , R. Linguerri 1 , G. A. Garcia 4 , L. Nahon 4 , A. Ben Houria 2 , H. Ghalila 2 , R. Ben Said 5 , M. Hochlaf 1
Affiliation  

ABSTRACT

N2 is a major constituent of Earth and planetary atmospheres. First, evidenced in 1952, the dissociative photoionization of molecular nitrogen, N2, plays an important role in the species abundance, out of equilibrium evolution, and chemical reactivity of diverse media including upper atmospheres (the so-called ionospheres) and plasma. Many scenarios were proposed for rationalizing the dissociative ionization mechanisms and exit channels, which are reviewed here, mainly involving the N2 +(C2u +, v+) vibrational levels state-to-state dynamics on which we focus. We show, however, that previous studies are not comprehensive enough for fully shedding light on the complex undergoing processes. As a complementary global work, we used state-of-the-art quantum chemistry, time dependent and independent theoretical approaches associated to advanced experimental techniques to study the unimolecular decomposition of the N2 + ions forming the N+ + N products. In addition to the already suggested spin-orbit-induced predissociation of the cationic C2u + state, we documented a new mechanism based on vibronic coupling and tunneling dissociation. Besides, the quantum processes highlighted here should be also in action in the dynamics of electronically excited larger molecular systems involved in physical and chemical phenomena in plasma and in various natural environments on Earth and beyond.



中文翻译:

分子氮的状态间解离光电离:全文

摘要

N 2是地球和行星大气的主要成分。首先,在1952年得到证明,分子氮N 2的解离光电离在物种丰度,失衡演化以及包括上层大气(所谓的电离层)和等离子体在内的多种介质的化学反应性中起着重要作用。为了使离解电离机制和出口通道合理化,提出了许多方案,在此进行了综述,主要涉及N 2 +(C 2u +,v +振动水平我们关注的状态到状态的动力学。但是,我们表明,以前的研究还不够全面,无法充分了解正在经历的复杂过程。作为一项补充性的全球工作,我们使用了与先进的实验技术相关的最新量子化学,时间依赖和独立的理论方法来研究形成N + + N产物的N 2 +离子的单分子分解。除了已经建议的自旋轨道诱导的阳离子C 2u +的预解离 ,我们记录了一种基于振动耦合和隧穿解离的新机制。此外,此处重点介绍的量子过程也应与电子激发的较大分子系统的动力学有关,这些较大的分子系统涉及等离子体以及地球上及以后的各种自然环境中的物理和化学现象。

更新日期:2020-10-30
down
wechat
bug