当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insect pectinate antennae maximize odor capture efficiency at intermediate flight speeds [Engineering]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2020-11-10 , DOI: 10.1073/pnas.2007871117
Mourad Jaffar-Bandjee 1, 2 , Thomas Steinmann 1 , Gijs Krijnen 2 , Jérôme Casas 1
Affiliation  

Flying insects are known to orient themselves over large distances using minute amounts of odors. Some bear pectinate antennae of remarkable architecture thought to improve olfactory performance. The semiporous, multiscale nature of these antennae influences how odor molecules reach their surface. We focus here on the repeating structural building blocks of these antennae in Saturniid moths. This microstructure consists of one ramus or branch and its many hair-like sensilla, responsible for chemical detection. We experimentally determined leakiness, defined as the proportion of air going through the microstructure rather than flowing around it, by particle image velocimetry visualization of the flow around three-dimensional printed scaled-up mock-ups. The combination of these results with a model of mass transfer showed that most pheromone molecules are deflected around the microstructure at low flow velocities, keeping them out of reach. Capture is thus determined by leakiness. By contrast, at high velocities, molecular diffusion is too slow to be effective, and the molecules pass through the structure without being captured. The sensory structure displays maximal odor capture efficiency at intermediate flow speeds, as encountered by the animal during flight. These findings also provide a rationale for the previously described “olfactory lens,” an increase in pheromone reception at the proximal end of the sensors. We posit that it is based on passive mass transfer rather than on physicochemical surface processes.



中文翻译:

果胶状昆虫触角在中等飞行速度下可最大限度地提高气味捕获效率[工程技术]

众所周知,飞行中的昆虫会使用少量的气味使自己定向到很远的距离。一些具有非凡结构的果胶状触角被认为可以改善嗅觉性能。这些触角的半多孔,多尺度性质影响气味分子到达其表面的方式。在这里,我们重点关注在Saturniid飞蛾中这些触角的重复结构构建基块。这种微观结构由一个支小支或一个分支及其许多毛状的感官组成,负责化学检测。我们通过对三维打印放大模型周围的流动进行粒子图像测速可视化,通过实验确定了泄漏,定义为通过微结构而不是围绕微结构流动的空气比例。这些结果与传质模型的结合表明,大多数信息素分子在低流速下会偏转到微观结构周围,使它们无法触及。因此,捕获是由泄漏确定的。相反,在高速下,分子扩散太慢而不能起作用,并且分子穿过结构而未被捕获。如在飞行中动物遇到的那样,感觉结构在中等流速下显示出最大的气味捕获效率。这些发现也为先前描述的“嗅觉透镜”提供了原理,即在传感器近端接收信息素的增加。我们认为它是基于被动传质而不是基于物理化学表面过程。使其无法触及。因此,捕获是由泄漏确定的。相反,在高速下,分子扩散太慢而不能起作用,并且分子穿过结构而未被捕获。如在飞行中动物遇到的那样,感觉结构在中等流速下显示出最大的气味捕获效率。这些发现也为先前描述的“嗅觉透镜”提供了原理,即在传感器近端接收信息素的增加。我们假定它是基于被动传质而不是基于物理化学表面过程。使其无法触及。因此,捕获是由泄漏确定的。相反,在高速下,分子扩散太慢而不能起作用,并且分子穿过结构而未被捕获。如在飞行中动物遇到的那样,感觉结构在中等流速下显示出最大的气味捕获效率。这些发现也为先前描述的“嗅觉透镜”提供了原理,即在传感器近端接收信息素的增加。我们假定它是基于被动传质而不是基于物理化学表面过程。如在飞行中动物遇到的那样,感觉结构在中等流速下显示出最大的气味捕获效率。这些发现还为先前描述的“嗅觉透镜”提供了原理,即在传感器近端接收信息素的增加。我们假定它是基于被动传质而不是基于物理化学表面过程。如在飞行中动物遇到的那样,感觉结构在中等流速下显示出最大的气味捕获效率。这些发现也为先前描述的“嗅觉透镜”提供了原理,即在传感器近端接收信息素的增加。我们假定它是基于被动传质而不是基于物理化学表面过程。

更新日期:2020-11-12
down
wechat
bug