当前位置: X-MOL 学术J. Biomed. Mater. Res. Part B Appl. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface modification and biotribological behavior of UHMWPE nanocomposites with GO infiltrated by ultrasonic induction
Journal of Biomedical Materials Research Part B: Applied Biomaterials ( IF 3.4 ) Pub Date : 2020-10-28 , DOI: 10.1002/jbm.b.34746
Peipei Lu 1 , Meiping Wu 1 , Xin Liu 1 , Xiu Ye 1 , Weipeng Duan 1, 2 , Xiaojin Miao 1, 3
Affiliation  

In this study, we have innovatively proposed a method for surface modification of ultra‐high molecular weight polyethylene (UHMWPE) artificial joint materials with graphene oxide (GO) infiltrated into UHMWPE substrate by ultrasonic induction. The mechanical properties of UHMWPE nanocomposites with GO infiltrated by ultrasonic induction were compared with that of GO mixed. The molecular structure, wettability, peak load, and bio‐tribological behavior of GO/UHMWPE nanocomposites were studied using fourier transform infrared spectroscopy, contact angle measuring instrument, electronic universal material testing machine, tribometer, and profilometer, respectively. The results show that the ultrasonic‐induction method can make GO adhere to UHMWPE surface well, and GO can significantly improve the wettability of UHMWPE substrate. When the ultrasound‐inducted time is up to 12 hr, the wetting angle of the nanocomposites (12 h‐GO/UHMWPE) is reduced to 65.24°, which is 20.51% lower than that of the pure UHMWPE. The peak load is 183 N, which is 20.22% higher than that of GO/UHMWPE prepared by the mixing method. The bio‐tribological property of UHMWPE nanocomposites with GO infiltrated by ultrasonic induction for 12 hr (12 h‐GO/UHMWPE) is the best, and its friction coefficient keeps more stable at a value of 0.0605 under the lubrication of calf serum, which is 11.81% lower than that of UHMWPE mixed with GO by a traditional method, and the wear rate is decreased to 3.25 × 10−5mm3N−1 m−1.

中文翻译:

超声诱导渗透GO的UHMWPE纳米复合材料的表面改性和生物摩擦学行为

在这项研究中,我们创新性地提出了一种超高分子量聚乙烯(UHMWPE)人工关节材料的表面改性方法,其中氧化石墨烯(GO)通过超声感应渗透到UHMWPE基材中。将超声感应渗透 GO 的 UHMWPE 纳米复合材料的力学性能与混合 GO 的力学性能进行了比较。分别使用傅里叶变换红外光谱仪、接触角测量仪、电子万能材料试验机、摩擦计和轮廓仪研究了GO/UHMWPE纳米复合材料的分子结构、润湿性、峰值载荷和生物摩擦学行为。结果表明,超声诱导法可以使GO很好地粘附在UHMWPE表面,GO可以显着提高UHMWPE基材的润湿性。当超声诱导时间达到 12 小时时,纳米复合材料 (12 h-GO/UHMWPE) 的润湿角降低到 65.24°,比纯 UHMWPE 的润湿角降低 20.51%。峰值载荷为183 N,比混合法制备的GO/UHMWPE高20.22%。UHMWPE 纳米复合材料与 GO 经超声感应渗透 12 小时(12 h-GO/UHMWPE)的生物摩擦学性能最好,在小牛血清的润滑下其摩擦系数保持在 0.0605 的值更稳定,即比传统方法掺GO的UHMWPE降低11.81%,磨损率降低到3.25×10 比混合法制备的GO/UHMWPE高22%。UHMWPE 纳米复合材料与 GO 经超声感应渗透 12 小时(12 h-GO/UHMWPE)的生物摩擦学性能最好,在小牛血清的润滑下其摩擦系数保持在 0.0605 的值更稳定,即比传统方法掺GO的UHMWPE降低11.81%,磨损率降低到3.25×10 比混合法制备的GO/UHMWPE高22%。UHMWPE 纳米复合材料与 GO 经超声感应渗透 12 小时(12 h-GO/UHMWPE)的生物摩擦学性能最好,在小牛血清的润滑下其摩擦系数保持在 0.0605 的值更稳定,即比传统方法掺GO的UHMWPE降低11.81%,磨损率降低到3.25×10-5毫米3 N -1-1
更新日期:2020-10-28
down
wechat
bug