当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable actuator based on RGB monitoring for detection and dissociation of gas hydrates
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.jngse.2020.103696
Alex Queiroz , Jaime E.N. Rodriguez , João Cajaiba

Abstract Interest in gas hydrates has increased in recent years, both due to the high availability of fuel gases under hydrate form and the problems related to the formation of deposits in offshore pipelines during crude oil production. This paper aims to describe a new application of a real-time RGB image-analysis system to evaluate hydrate crystallization and to control the formation of deposits through the automated injection of chemical additives. Induction time values obtained by RGB image analysis were similar to calorimetry results, and both were more assertive when compared to torque measurements. Using carbon dioxide or methane as guest gaseous molecule, RGB image analysis was used to detect an increase on induction time with temperature, and a decrease on this parameter with increasing pressure or vessel size. For CO2 at 40 bar, induction time increased from 12.8 to 118.5 minutes when temperature was increased from 3 to 5oC, and decreased from 198.8 to 6.0 minutes and pressure was raised from 30 to 50 bar at 3oC. For CH4 at 40 bar, induction time increased from 260.2 to 516.9 min when temperature was increased from 1 to 3oC, and decreased from 516.9 to 0.5 minutes and pressure was raised from 40 to 60 bar at 3oC. The programmable actuator was able to respond to hydrate formation and inject a thermodynamic inhibitor (ethanol or monoethylene glycol) for the dissolution of the deposits approximately 10 minutes after formation.

中文翻译:

基于RGB监测的可编程执行器,用于气体水合物的检测和解离

摘要 近年来,由于水合物形式的燃料气的高可用性以及与原油生产过程中海上管道中沉积物形成有关的问题,对天然气水合物的兴趣增加。本文旨在描述实时 RGB 图像分析系统在评估水合物结晶和通过自动注入化学添加剂控制沉积物形成方面的新应用。通过 RGB 图像分析获得的诱导时间值与量热法结果相似,与扭矩测量相比,两者都更加自信。使用二氧化碳或甲烷作为客体气态分子,RGB 图像分析用于检测诱导时间随温度的增加,以及该参数随压力或容器尺寸的增加而降低。对于 40 bar 的 CO2,当温度从 3°C 增加到 5°C 时,诱导时间从 12.8 分钟增加到 118.5 分钟,并从 198.8 分钟减少到 6.0 分钟,压力在 3°C 时从 30 巴增加到 50 巴。对于 40 bar 的 CH4,当温度从 1 到 3oC 时,诱导时间从 260.2 增加到 516.9 分钟,在 3oC 下从 516.9 减少到 0.5 分钟,压力从 40 到 60 巴。可编程致动器能够响应水合物的形成,并在形成约 10 分钟后注入热力学抑制剂(乙醇或单乙二醇)以溶解沉积物。当温度从 1°C 增加到 3°C 时需要 9 分钟,然后从 516.9 减少到 0.5 分钟,并且压力在 3°C 时从 40 巴增加到 60 巴。可编程致动器能够响应水合物的形成,并在形成约 10 分钟后注入热力学抑制剂(乙醇或单乙二醇)以溶解沉积物。当温度从 1°C 增加到 3°C 时需要 9 分钟,然后从 516.9 减少到 0.5 分钟,并且压力在 3°C 时从 40 巴增加到 60 巴。可编程致动器能够响应水合物的形成,并在形成约 10 分钟后注入热力学抑制剂(乙醇或单乙二醇)以溶解沉积物。
更新日期:2020-12-01
down
wechat
bug