当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Loofah-based microalgae and cyanobacteria biocomposites for intensifying carbon dioxide capture
Journal of CO2 Utilization ( IF 7.7 ) Pub Date : 2020-10-24 , DOI: 10.1016/j.jcou.2020.101348
Pichaya In-na , Abbas A. Umar , Adam D. Wallace , Michael C. Flickinger , Gary S. Caldwell , Jonathan G.M. Lee

Microalgae and cyanobacteria have been evaluated for biological CO2 capture from flue gases for over 40 years; however, commercial open ponds and photobioreactors suffer many drawbacks including a slow rate of CO2 capture and high water usage. We evaluate an intensified 3D cell immobilisation approach with a small water demand, by coating latex binders onto defined surface area (947 m2 m−3) and void space (81.78 ± 4.41 %) loofah sponge scaffolds, forming porous 3D biocomposites with three microalgae species; freshwater Chlorella vulgaris, marine Dunaliella salina and Nannochloropsis oculata, and two strains of freshwater Synechococcus elongatus cyanobacteria. Binder toxicity and adhesion screening protocols were established ahead of eight weeks semi-batch and six weeks continuous CO2 fixation trials. Acrylic and polyurethane binders were effective for microalgae, and bio-based (Replebin®) binders were suited for cyanobacteria. The highest average net CO2 fixation rates from each species were 0.17 ± 0.01, 0.25 ± 0.01, 0.12 ± 0.01, 0.68 ± 0.18 and 0.93 ± 0.30 g CO2 g-1biomass d-1 for C. vulgaris, D. salina, N. oculata, S. elongatus PCC 7942 and S. elongatus CCAP 1479/1A respectively. This equates to predicted CO2 capture from scaled systems of up to 340.11 ± 110 tCO2 t-1biomass yr-1. Analysis of the kinetics of CO2 absorbtion and SEM imaging suggests that the cells were embedded within a polymer film that covered the scaffold. Biocomposites continuously fed with 5% CO2 had high lipid contents approaching 70 % dry weight. This biocomposite approach shows promise to intensify biological CO2 capture and possible application in bioenergy with carbon capture and storage (BECCS).



中文翻译:

基于丝瓜络的微藻类和蓝细菌生物复合物,可增强二氧化碳的捕获

已经对微藻和蓝细菌从烟道气中捕获生物CO 2进行了40多年的评估;目前,已经有30多年的历史。然而,商业开放池塘和光生物反应器遭受许多缺点,包括缓慢的CO 2捕获速率和高用水量。我们通过在特定的表面积(947 m 2 m -3)和空隙空间(81.78±4.41%)的丝瓜海绵支架上涂覆乳胶粘合剂,形成具有3个微藻类的多孔3D生物复合材料,从而评估了需要少量水的强化3D细胞固定方法。种类; 淡水小球藻,海洋杜氏盐藻Nannochloropsis oculata,以及两种淡水长球菌。蓝细菌。在八周的半间歇和六周的连续CO 2固定试验之前,建立了粘合剂毒性和粘附筛选方案。丙烯酸和聚氨酯粘合剂对微藻类有效,而生物基(Replebin®)粘合剂适用于蓝细菌。最高平均净CO 2从各种固定率分别为0.17±0.01,0.25±0.01,0.12±0.01,0.68±0.18和0.93±0.30克Co 2-1的生物质d -1普通小球藻杜氏盐藻N.绿球藻S.细长PCC 7942和S.细长CCAP 1479 / 1A分别。这相当于从规模高达340.11±110 tCO 2 t -1的生物量yr -1的规模化系统中预测的CO 2捕获。对CO 2吸收动力学和SEM成像的分析表明,细胞被嵌入覆盖支架的聚合物膜内。连续喂入5%CO 2的生物复合材料的脂质含量高,接近干重的70%。这种生物复合材料方法有望增强生物的CO 2捕集,并有望通过碳捕集与封存(BECCS)应用于生物能源。

更新日期:2020-10-30
down
wechat
bug