当前位置: X-MOL 学术Int. J. Solids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures
International Journal of Solids and Structures ( IF 3.6 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ijsolstr.2020.10.016
Fan Yang , Weihua Xie , Songhe Meng

Abstract The helicoidal fibril structures are identified in a variety of naturally occurring species, like the crustaceans. This paper describes a theoretical modelling approach to study the fracture properties and toughening mechanism of the crustaceans-inspired helicoidal structures. First, due to the low fracture resistance of the commonly used carbon fibre reinforced polymers (CFRPs) cross-ply laminates, this research explains the feasibility for improving the fracture toughness of CFRPs based on the bionic design concept. Then, the biomimetic architected CFRPs mimicking the exoskeleton of crustacean structures are analysed for fracture performance. The configurational force theory is utilised to estimate the crack-driving force in crustacean-inspired structures, and a theoretical model is also developed to characterise the strain energy release rates in the bio-inspired structures based on crack kinking/twisting observations. Finally, simulations on the proposed computational model of the crack-driving force are conducted to predict the fracture toughness of the bio-inspired specimens under Mode I loading, and the toughening mechanism is further explored. The results show that elastic modulus and orientations of helix fibres played important roles in the fracture performance of helicoidal fibre structures. This work deepens the understanding of the structure-performance relationship of the helicoidal composites in bionic design, and it inspires more applications that require CFRP laminates with enhanced toughness.

中文翻译:

受甲壳类动物启发的螺旋结构中的裂纹驱动力和增韧机制

摘要 在多种天然物种(如甲壳类动物)中发现了螺旋原纤维结构。本文描述了一种理论建模方法,用于研究受甲壳类动物启发的螺旋结构的断裂特性和增韧机制。首先,由于常用的碳纤维增强聚合物(CFRPs)交叉层板的断裂阻力较低,本研究解释了基于仿生设计理念提高CFRPs断裂韧性的可行性。然后,对模仿甲壳类动物结构外骨骼的仿生结构 CFRP 进行断裂性能分析。利用构型力理论来估计受甲壳类动物启发的结构中的裂纹驱动力,并且还开发了一个理论模型来表征基于裂纹扭结/扭曲观察的仿生结构中的应变能释放率。最后,对所提出的裂纹驱动力计算模型进行了模拟,以预测模式 I 加载下仿生试样的断裂韧性,并进一步探索增韧机制。结果表明,螺旋纤维的弹性模量和取向对螺旋纤维结构的断裂性能起着重要作用。这项工作加深了对仿生设计中螺旋复合材料结构-性能关系的理解,并激发了更多需要具有增强韧性的 CFRP 层压板的应用。对所提出的裂纹驱动力计算模型进行模拟,以预测模式 I 加载下仿生试样的断裂韧性,并进一步探索增韧机制。结果表明,螺旋纤维的弹性模量和取向对螺旋纤维结构的断裂性能起着重要作用。这项工作加深了对仿生设计中螺旋复合材料结构-性能关系的理解,并激发了更多需要具有增强韧性的 CFRP 层压板的应用。对所提出的裂纹驱动力计算模型进行模拟,以预测模式 I 加载下仿生试样的断裂韧性,并进一步探索增韧机制。结果表明,螺旋纤维的弹性模量和取向对螺旋纤维结构的断裂性能起着重要作用。这项工作加深了对仿生设计中螺旋复合材料结构-性能关系的理解,并激发了更多需要具有增强韧性的 CFRP 层压板的应用。结果表明,螺旋纤维的弹性模量和取向对螺旋纤维结构的断裂性能起着重要作用。这项工作加深了对仿生设计中螺旋复合材料结构-性能关系的理解,并激发了更多需要具有增强韧性的 CFRP 层压板的应用。结果表明,螺旋纤维的弹性模量和取向对螺旋纤维结构的断裂性能起着重要作用。这项工作加深了对仿生设计中螺旋复合材料结构-性能关系的理解,并激发了更多需要具有增强韧性的 CFRP 层压板的应用。
更新日期:2021-01-01
down
wechat
bug