当前位置: X-MOL 学术Eur. J. Mech. B Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and analysis of micro-nano scale nested-grooved surface structure for drag reduction based on ‘Vortex-Driven Design’
European Journal of Mechanics - B/Fluids ( IF 2.6 ) Pub Date : 2020-10-21 , DOI: 10.1016/j.euromechflu.2020.10.007
Liyue Wang , Cong Wang , Shuyue Wang , Gang Sun , Bo You

Bioinspired grooved surface structure design has been widely used as an efficient passive flow control method in drag reduction. The total drag of plate with grooved surface structure can be decomposed into friction and pressure drag. In this paper, the relationship between them and the distribution of vortex structure in flow field has been analyzed for obtaining the drag reduction mechanism of grooved surface structure. The concept of ‘Vortex-Driven Design’ is proposed to improve the performance of conventional periodic single-level grooved surface structure. A design scheme of micro-nano scale nested-grooved surface structure with better drag reduction performance is given. The authors conduct numerical simulation of rectangular nested-grooved surface structure in laminar flow considering rarefaction based on Lattice Boltzmann Method at high Knudsen number. The results show that the nested-grooved surface structure induces higher complexity in the secondary vortex structure, and that the changes of vorticity distribution and flow characteristics drive the changes of velocity distribution and shear stress in the grooved surface. Compared with conventional grooved surface structure, the average friction drag of the surface is further reduced. Two geometric optimization cases of the conventional grooved surface and nested-grooved surface are realized by Genetic Algorithm, showing that the maximum drag reduction rate of the optimal nested-grooved surface can reach 18.76% while that of the optimal conventional grooved surface only reaches 13.61%. Based on ‘Vortex-Driven Design’, an innovative material improvement method for drag reduction is proposed as a new direction for subsequent research on microstructure in terms of drag reduction and energy conservation.



中文翻译:

基于“涡驱动设计”的微纳米尺度沟槽表面减阻设计与分析

具有生物启发性的沟槽表面结构设计已被广泛用作降低阻力的有效被动流量控制方法。具有沟槽表面结构的板的总阻力可分解为摩擦力和压力阻力。本文分析了它们与流场中涡旋结构的分布之间的关系,以得到带槽表面结构的减阻机理。提出了“涡流驱动设计”的概念,以改善常规周期性单层带槽表面结构的性能。提出了一种具有较好减阻性能的微纳米尺度沟槽表面结构设计方案。作者在高努数下,基于莱迪思·玻尔兹曼方法,对考虑稀疏性的层流中矩形嵌套沟槽表面结构进行了数值模拟。结果表明,嵌套沟槽表面结构在二级涡旋结构中引起了更高的复杂性,涡度分布和流动特性的变化驱动了沟槽表面中速度分布和切应力的变化。与常规的带槽表面结构相比,该表面的平均摩擦阻力进一步减小。通过遗传算法实现了常规沟槽表面和嵌套沟槽表面的两种几何优化情况,表明最优嵌套沟槽表面的最大减阻率可以达到18。76%,而最佳的常规沟槽表面仅达到13.61%。在“涡流驱动设计”的基础上,提出了一种创新的减阻材料改进方法,作为后续研究减阻和节能方面的新方向。

更新日期:2020-10-30
down
wechat
bug