当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DFMSPH22: A C-code for the double folding interaction potential of two spherical nuclei
Computer Physics Communications ( IF 6.3 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.cpc.2020.107690
Igor I. Gontchar , Maria V. Chushnyakova , Natalya A. Khmyrova

Abstract This is a new version of the DFMSPH (DFMSPH14, DFMSPH19) code published earlier. The new version is designed to obtain the nucleus–nucleus potential between two spherical nuclei using the double folding model (DFM). In particular, the code enables one to find the Coulomb barrier. Using the new version, one can employ three types of effective nucleon–nucleon interaction: the M3Y, Migdal, and relativistic mean-field interactions. The main functionalities of the original code (the nucleus–nucleus potential as a function of the distance between the centers of mass of colliding nuclei and the characteristics of the Coulomb barrier) are retained. The new version enables using proton or neutron as the projectile particle for all nucleon–nucleon interactions but the Migdal one. New version program summary Program title: DFMSPH22 CPC Library link to program files: http://dx.doi.org/10.17632/n6bsf4zxcz.3 Code Ocean capsule: https://codeocean.com/capsule/1595275 Licensing provisions: GLPv2 Programming language: C Journal reference of previous version: Comput. Phys. Commun. 242 (2019) 153-155 Does the new version supersede the previous version? Yes Reason for new version: Different versions of the relativistic mean-field effective NN-forces are used in the literature by different groups of researchers but seldom within the same numerical scheme; proton or neutron could not be used as the projectile nucleus in the previous version. Summary of revisions: Two extra options have been added in comparison with the previous version: • In the DFMSPH19 [1], the effective nucleon–nucleon (NN) M3Y and Migdal forces were used as the basis for the nucleus–nucleus interaction potential obtained by means of the double-folding model. In the new version, DFMSPH22, the user still has the same options, but there is an extra possibility to use one of the Relativistic Mean-Field (RMF) effective NN-forces. The nucleus–nucleus potential based on these forces is applied in the literature every now and again to evaluate the nucleus–nucleus potential energy (see, e.g. [2–5]). The corresponding equations and different parameter sets of the RMF forces implemented in DFMSPH22 are presented in the Supplementary material file. In this file, one finds also the comparison of the total potential as well as the nuclear part of it obtained using the RMF NN forces with those obtained using M3Y NN forces [1,6]. • In the present version, we include a possibility for using proton or neutron as the projectile particle which was absent before. This option works for all the NN-forces but the Migdal one due to the structure of the latter. A restriction when using this option is that the density dependence does not work with proton or neutron as the projectile. See details in the Supplementary material file. The code consists now of 6 C-files and one header file. It reads the data from 5 input files and prints the results into 4 output files. The details of the changes in each source file as well as the description of the input and output files are presented in file . The input and output files corresponding to two test runs are included in the program files archive. Some misprints in Refs. [1,6] are corrected (see the Supplementary material file). Nature of problem: The code calculates the bare (i.e. ignoring the channels coupling) interaction potential between two spherical colliding nuclei as a function of the center of mass distance in a semi-microscopic way. The height and radius, as well as the curvature and skewness of the Coulomb barrier, are evaluated. Dependence of these barrier parameters upon the type and/or characteristics of the effective NN forces (like e.g. M3Y, Migdal, or relativistic mean-field type; the range of the exchange part of the nuclear term) as well as upon the parameters of the density distributions can be studied. Solution method: The nucleus–nucleus potential is calculated using the double folding model with the Coulomb and effective NN interactions. For the direct parts of the Coulomb and nuclear terms, the Fourier transform method is used. For the exchange part most often the zero-range approximation is used. To calculate the exchange part of the nucleus–nucleus potential based on the M3Y interaction with the finite range, the density matrix expansion method is applied. Acknowledgments The authors are indebted to Dr. Wasiu Yahya for finding misprints in Refs. [6,7]. References I.I. Gontchar, M.V. Chushnyakova, N.A. Khmyrova, Comput. Phys. Commun. 242 (2019) 153–155. B. Singh, M. Bhuyan, S.K. Patra, R.K. Gupta, J. Phys. G Nucl. Part. Phys. 39 (2012) 025101. C. Lahiri, S.K. Biswal, S.K. Patra, Int. J. Mod. Phys. E 25 (2016) 1650015. M. Bhuyan, R. Kumar, Phys. Rev. C 98 (2018) 054610. M. V Chushnyakova, I.I. Gontchar, N.A. Khmyrova, J. Phys. G Nucl. Part. Phys. (2020) doi: 10.1088/1361-6471/ab907a. I.I. Gontchar, M.V. Chushnyakova, Comput. Phys. Commun. 181 (2010) 168–182. I.I. Gontchar, M.V. Chushnyakova, Comput. Phys. Commun. 206 (2016) 97–102.

中文翻译:

DFMSPH22:两个球核双折叠相互作用势的 C 代码

摘要 这是之前发布的 DFMSPH(DFMSPH14、DFMSPH19)代码的新版本。新版本旨在使用双折叠模型 (DFM) 获得两个球形核之间的核-核势。特别是,该代码使人们能够找到库仑势垒。使用新版本,可以采用三种有效的核子-核子相互作用:M3Y、Migdal 和相对论平均场相互作用。保留了原始代码的主要功能(作为碰撞核质心之间距离的函数的核-核势和库仑势垒的特征)。新版本能够使用质子或中子作为除 Migdal 之外的所有核子-核子相互作用的射弹粒子。新版程序概要 程序名称:DFMSPH22 CPC 库程序文件链接:http://dx.doi.org/10.17632/n6bsf4zxcz.3 代码海洋胶囊:https://codeocean.com/capsule/1595275 许可条款:GLPv2 编程语言:C 以前的期刊参考版本:计算。物理。社区。242 (2019) 153-155 新版本是否取代旧版本?是 新版本的原因:不同版本的相对论平均场有效 NN 力在文献中被不同的研究小组使用,但很少在相同的数值方案中使用;在以前的版本中,质子或中子不能用作弹丸核。修订摘要:与之前的版本相比,新增了两个选项: • 在 DFMSPH19 [1] 中,有效核子-核子 (NN) M3Y 和 Migdal 力被用作通过双折叠模型获得的核-核相互作用势的基础。在新版本 DFMSPH22 中,用户仍然具有相同的选项,但有额外的可能性使用相对论平均场 (RMF) 有效 NN 力之一。基于这些力的核-核势在文献中不时被应用来评估核-核势能(参见,例如[2-5])。在 DFMSPH22 中实现的 RMF 力的相应方程和不同参数集显示在补充材料文件中。在该文件中,还发现了使用 RMF NN 力获得的总势及其核部分与使用 M3Y NN 力获得的势的比较 [1,6]。• 在当前版本中,我们增加了使用质子或中子作为抛射粒子的可能性,而这在以前是不存在的。由于后者的结构,此选项适用于除 Migdal 之外的所有 NN 力。使用此选项时的一个限制是密度相关性不适用于质子或中子作为射弹。请参阅补充材料文件中的详细信息。该代码现在由 6 个 C 文件和一个头文件组成。它从 5 个输入文件中读取数据并将结果打印到 4 个输出文件中。每个源文件中更改的详细信息以及输入和输出文件的描述都在文件 . 与两次测试运行相对应的输入和输出文件包含在程序文件存档中。参考文献中的一些印刷错误。[1,6] 已更正(参见补充材料文件)。问题性质:代码以半微观方式计算两个球形碰撞核之间的裸(即忽略通道耦合)相互作用势作为质心距离的函数。评估库仑势垒的高度和半径以及曲率和偏度。这些势垒参数取决于有效 NN 力的类型和/或特性(例如 M3Y、Migdal 或相对论平均场类型;核项的交换部分的范围)以及可以研究密度分布。求解方法:使用具有库仑和有效 NN 相互作用的双折叠模型计算核-核势。对于库仑项和核项的直接部分,使用傅立叶变换方法。对于交换部分,最常使用零范围近似。为了基于有限范围的 M3Y 相互作用计算核-核势的交换部分,应用了密度矩阵展开方法。致谢 作者感谢 Wasiu Yahya 博士发现参考文献中的印刷错误。[6,7]。参考文献 II Gontchar, MV Chushnyakova, NA Khmyrova, Comput。物理。社区。242 (2019) 153-155。B. Singh、M. Bhuyan、SK Patra、RK Gupta、J. Phys。G 核。部分。物理。39 (2012) 025101. C. Lahiri, SK Biswal, SK Patra, Int. J. 国防部 物理。E 25 (2016) 1650015. M. Bhuyan, R. Kumar, Phys. Rev. C 98 (2018) 054610. M. V Chushnyakova, II Gontchar, NA Khmyrova, J. Phys. G 核。部分。物理。(2020) doi:10.1088/1361-6471/ab907a。II Gontchar,MV Chushnyakova,计算机。物理。社区。181 (2010) 168-182。二 Gontchar,MV Chushnyakova,计算机。物理。社区。206 (2016) 97-102。
更新日期:2021-02-01
down
wechat
bug