当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous modified Na2.9V1.9Zr0.1(PO4)3/C@rGO as a superior high rate and ultralong lifespan cathode for symmetric sodium ion batteries
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-10-27 , DOI: 10.1016/j.cej.2020.127451
Yanjun Chen , Jun Cheng , Chao Wang , Zhenfeng He , Yanzhong Wang , Dan Li , Li Guo

Na3V2(PO4)3(NVP), a promising cathode candidate for sodium ion batteries (SIBs), is restricted by the poor intrinsic conductivity and sever volumetric shrinkage. Herein, we report a feasible dual strategy to optimize the crystal structure and conductive characteristics of NVP. The substitution of Zr4+ is favorable to broaden the ionic channel and stabilize the structural framework due to its larger ionic radius. Meanwhile, vacancies are generated with Zr4+ doping, dramatically facilitating the internal electronic conduction. The coated carbon layer and rGO construct an efficient carbon matrix for electronic and ionic transportation. Moreover, the layered rGO nanosheet benefits to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for Na+ migration, facilitating the kinetic characteristics sufficiently. Consequently, the optimized Na2.9V1.9Zr0.1(PO4)3/C@rGO (Zr0.1-NVP/C@rGO) reveals an outstanding rate capability (81.3 mAh g−1 at 120C) and long cyclic stability (retention of 74.3% at 200C after 3000 cycles) in a half cell. Moreover, the symmetric full cell presents competitive electrochemical property and potential applicability. Multiple measurements demonstrate the superior kinetic characteristics of Zr0.1-NVP/C@rGO, in which GITT illuminates the variation rule of DNa+ value definitely. Such a facile and beneficial design supplies an effective strategy for other materials with high-quality in SIBs.



中文翻译:

同时修饰的Na2.9V1.9Zr0.1(PO4)3 / C @ rGO可作为对称钠离子电池的优异高速率和超长寿命阴极

Na 3 V 2(PO 43(NVP)是钠离子电池(SIBs)的有希望的阴极候选材料,它受本征电导率低和体积收缩严重的限制。在这里,我们报告了一种可行的双重策略来优化NVP的晶体结构和导电特性。Zr 4+的取代由于其较大的离子半径而有利于拓宽离子通道并稳定结构框架。同时,Zr 4+产生了空位掺杂,大大促进了内部电子传导。涂层碳层和rGO构成了用于电子和离子传输的有效碳基质。而且,层状rGO纳米片有益于抑制烧结晶粒的生长,减小粒径以提供Na +迁移的缩短途径,充分促进了动力学特性。因此,优化的Na 2.9 V 1.9 Zr 0.1(PO 43 / C @ rGO(Zr0.1-NVP/C@rGO)显示出出色的速率能力(81.3 mAh g -1半电池中有120℃的高温)和长循环稳定性(3000个循环后200℃时74.3%的保留率)。此外,对称的全电池具有竞争性的电化学性能和潜在的适用性。多次测量证明了Zr0.1-NVP/C@rGO的优异动力学特性,其中GITT明确阐明了D Na +值的变化规律。这种简便而有益的设计为SIB中其他高质量的其他材料提供了有效的策略。

更新日期:2020-10-27
down
wechat
bug