当前位置: X-MOL 学术Order › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Bounds for the Number of Linear Extensions Via Chain and Antichain Coverings
Order ( IF 0.4 ) Pub Date : 2020-10-22 , DOI: 10.1007/s11083-020-09542-3
I. A. Bochkov , F. V. Petrov

Let $(\mathcal{P},\leqslant)$ be a finite poset. Define the numbers $a_1,a_2,\ldots$ (respectively, $c_1,c_2,\ldots$) so that $a_1+\ldots+a_k$ (respectively, $c_1+\ldots+c_k$) is the maximal number of elements of $\mathcal{P}$ which may be covered by $k$ antichains (respectively, $k$ chains.) Then the number $e(\mathcal{P})$ of linear extensions of poset $\mathcal{P}$ is not less than $\prod a_i!$ and not more than $n!/\prod c_i!$. A corollary: if $\mathcal{P}$ is partitioned onto disjoint antichains of size $b_1,b_2, \ldots$, then $e(\mathcal{P})\geqslant \prod b_i!$.

中文翻译:

通过链和反链覆盖的线性扩展数的界限

令 $(\mathcal{P},\leqslant)$ 是一个有限偏序集。定义数字 $a_1,a_2,\ldots$(分别为 $c_1,c_2,\ldots$),使得 $a_1+\ldots+a_k$(分别为 $c_1+\ldots+c_k$)是元素的最大数目$\mathcal{P}$ 可能被 $k$ 反链(分别为 $k$ 链)覆盖。然后是poset $\mathcal{P}$ 的线性扩展数$e(\mathcal{P})$不小于 $\prod a_i!$ 且不大于 $n!/\prod c_i!$。一个推论:如果 $\mathcal{P}$ 被划分到大小为 $b_1,b_2, \ldots$ 的不相交反链上,那么 $e(\mathcal{P})\geqslant \prod b_i!$。
更新日期:2020-10-22
down
wechat
bug