当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development and assessment of large stroke piezo-hydraulic actuator for micro positioning applications
Precision Engineering ( IF 3.6 ) Pub Date : 2020-10-28 , DOI: 10.1016/j.precisioneng.2020.10.012
Mohith S , Muralidhara Rao , Navin Karanth P , S.M. Kulkarni , Adithya R. Upadhya

The primary concern with micro-positioning systems is to achieve precise positioning, coupled with the broad stroke of actuation. Over the past few years, the advancement in piezoelectric technology has adequately fulfilled the purpose of precision positioning applications. The advantages of accurate control and positioning accuracy, compactness, minimum wear and tear, enhanced stiffness in conjunction with better dynamic response has led to the extensive utilization of piezoelectric actuators as a precision positioning source. However, the inadequacies of limited positioning stroke, together with the inherent hysteresis hinder the performance of piezoelectric actuators. The present work aims at the development of a new piezo-hydraulic actuator for overcoming the disadvantage of limited stroke of the piezoelectric actuator through hydraulic displacement amplification mechanism (HDAM). The proposed piezo-hydraulic actuator works based on differential area principle and Pascal's law. The prototype of the piezo-hydraulic actuator incorporates amplified piezo actuator (APA) as a primary actuator which deflects a piston causing the fluid to get displaced from larger cross-section to smaller cross-section. This intern leads to amplified motion. An electromechanical model coupled with the Bouc-Wen hysteresis model is implemented in the present work to simulate the displacement and force characteristics of the proposed piezo-hydraulic actuator. The experimental work involved the fabrication and characterization of the proposed piezo-hydraulic actuator. The experimental results are validated by comparing with the simulated results obtained from the mathematical model. The maximum amplification factor of the piezo-hydraulic actuator achieved is about 77.00, which is in close agreement with the theoretical amplification factor of 79, with the error of about 2.53%. When the piezo hydraulic actuator is actuated at 150 V, the amplified piezo actuator achieves a maximum deflection of 129.02 μm which gets amplified to a value of about 9934.69 μm through hydraulic amplification. The fabricated prototype of piezo-hydraulic actuator achieves maximum blocking force of 0.5 N at 150 V.



中文翻译:

用于微定位应用的大行程压电液压执行器的开发和评估

微定位系统的主要关注点是实现精确定位以及宽范围的驱动行程。在过去的几年中,压电技术的进步已经充分满足了精密定位应用的目的。精确的控制和定位精度,紧凑性,最小的磨损,增强的刚度以及更好的动态响应等优点使压电致动器被广泛用作精确的定位源。然而,有限的定位行程的不足以及固有的滞后现象阻碍了压电致动器的性能。本工作旨在开发新的压电液压致动器,以克服通过液压位移放大机构(HDAM)限制压电致动器行程的缺点。拟议的压电液压执行器基于微分面积原理和帕斯卡定律工作。压电液压执行器的原型结合了放大压电执行器(APA)作为主要执行器,该主执行器使活塞偏转,导致流体从较大的横截面移动到较小的横截面。这个实习生会导致动作放大。在本工作中,将机电模型与Bouc-Wen磁滞模型耦合起来,以模拟所提出的压电液压执行器的位移和力特性。实验工作涉及所提出的压电液压致动器的制造和表征。通过与从数学模型获得的模拟结果进行比较,验证了实验结果。压电液压执行器的最大放大系数约为77.00,与理论放大系数79极为吻合,误差约为2.53%。当以150 V电压驱动压电液压执行器时,放大后的压电执行器的最大挠度为129.02μm,通过液压放大将其放大到大约9934.69μm。压电液压执行器的原型可以在150 V时达到0.5 N的最大阻挡力。通过与从数学模型获得的模拟结果进行比较,验证了实验结果。所获得的压电液压致动器的最大放大系数约为77.00,与理论放大系数79极为吻合,误差约为2.53%。当以150 V电压驱动压电液压执行器时,放大后的压电执行器的最大挠度为129.02μm,通过液压放大将其放大到大约9934.69μm。压电液压执行器的原型可以在150 V时达到0.5 N的最大阻挡力。通过与从数学模型获得的模拟结果进行比较,验证了实验结果。所获得的压电液压致动器的最大放大系数约为77.00,与理论放大系数79极为吻合,误差约为2.53%。当以150 V电压驱动压电液压执行器时,放大后的压电执行器的最大挠度为129.02μm,通过液压放大将其放大到大约9934.69μm。压电液压执行器的原型可以在150 V时达到0.5 N的最大阻挡力。53%。当以150 V电压驱动压电液压执行器时,放大后的压电执行器的最大挠度为129.02μm,通过液压放大将其放大到大约9934.69μm。压电液压执行器的原型可以在150 V时达到0.5 N的最大阻挡力。53%。当以150 V电压驱动压电液压执行器时,放大后的压电执行器的最大挠度为129.02μm,通过液压放大将其放大到大约9934.69μm。压电液压执行器的原型可以在150 V时达到0.5 N的最大阻断力。

更新日期:2020-10-30
down
wechat
bug