当前位置: X-MOL 学术Micron › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron beam-induced crystallization of Al2O3 gate layer on β-Ga2O3 MOS capacitors
Micron ( IF 2.4 ) Pub Date : 2020-10-21 , DOI: 10.1016/j.micron.2020.102954
Christopher J. Klingshirn , Asanka Jayawardena , Sarit Dhar , Rahul P. Ramamurthy , Dallas Morisette , Zoey Warecki , John Cumings , Tsvetanka Zheleva , Aivars Lelis , Lourdes G. Salamanca-Riba

Electron irradiation was observed to induce crystallization of amorphous Al2O3 films grown by atomic layer deposition on β-Ga2O3 substrates. Growth of large, strongly oriented crystalline γ-Al2O3 regions was induced using conventional-mode transmission electron microscopy (TEM) and observed to propagate outward from the interface as well as from the previously crystallized Al2O3. A few nm of epitaxial Al2O3 was already visible at the beginning of the crystallization front propagation. The phenomenon is not explained by electron beam-induced heating, which amounted to less than 1 K at all times. Direct measurement of the beam current permitted quantitative correlation between electron dose rates and crystallization rates. Enlarging the electron beam to reduce current density was found to slow the propagation of the crystallization front. Furthermore, a factor of 4 smaller electron dose was required for a given rate using 100 keV electrons as compared to 200 keV, indicating that crystallization is driven by ionization-induced atomic rearrangement within the gate layer. Lattice spacing between the oxygen sub-lattices of β-Ga2O3 and γ-Al2O3 are favorable for the nucleation of crystallites at the interface. Multivariate statistical analysis of electron energy loss spectroscopy (EELS) data also showed evidence of diffusion between Al and Ga in the substrates and gate oxides, respectively. These structural transformations at the semiconductor–insulator interface are expected to influence the device electrical behavior and are relevant to the continued refinement of β-Ga2O3 device technology.



中文翻译:

电子束诱导β- Ga 2 O 3 MOS电容器上Al 2 O 3栅极层的结晶

观察到电子辐射诱导了通过原子层沉积在β- Ga 2 O 3衬底上而生长的非晶Al 2 O 3膜的结晶。使用常规模式透射电子显微镜(TEM)诱导了大的,强取向的结晶γ- Al 2 O 3区域的生长,并观察到其从界面以及先前结晶的Al 2 O 3向外传播。几nm的外延Al 2 O 3在结晶前沿传播开始时就已经可见。这种现象不能用电子束感应加热来解释,该加热始终小于1K。直接测量束流可以实现电子剂量率和结晶率之间的定量相关。发现扩大电子束以减小电流密度会减慢结晶前沿的传播。此外,对于给定速率,使用100 keV电子要比使用200 keV小4倍的电子剂量,这表明结晶是由栅极层内电离引起的原子重排驱动的。β - Ga 2 O 3γ- Al的氧亚晶格之间的晶格间距2 O 3对于界面处的微晶核化是有利的。电子能量损失谱(EELS)数据的多变量统计分析还显示出分别在衬底和栅极氧化物中Al和Ga之间扩散的证据。预计在半导体-绝缘体界面处的这些结构转变会影响器件的电性能,并且与β- Ga 2 O 3器件技术的不断完善有关。

更新日期:2020-11-12
down
wechat
bug