当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of High-Frequency Measurement of Transistors Along With Electromagnetic and SPICE Cosimulation
IEEE Transactions on Electron Devices ( IF 3.1 ) Pub Date : 2020-11-01 , DOI: 10.1109/ted.2020.3022603
Sebastien Fregonese , Marco Cabbia , Chandan Yadav , Marina Deng , Soumya Ranjan Panda , Magali De Matos , Didier Celi , Anjan Chakravorty , Thomas Zimmer

Terahertz (THz) silicon-based electronics is undergoing rapid developments. In order to keep this momentum high, an accurate and optimized on-wafer characterization procedure needs to be developed. While evaluating passive elements, the measured s-parameter data can be verified by a direct use of EM simulation tools. However, this verification requires to precisely introduce part of the measurement environment such as the probes, pads, and access lines to accurately predict the impact of calibration and layout for on-wafer measurements. Unfortunately, this procedure is limited to passive elements. Hence, in this work, we propose a new procedure to emulate the measurement of active devices using an electromagnetic SPICE cosimulation. By this method, one can clearly highlight that a measurement artifact that was observed for the transistor measurement can be reproduced. One of the most representative examples of measurement artifact involves the measurement and estimation of ${f}_{\text {MAX}}$ which is not constant over all frequency bands. Also, the measurement is difficult to perform above 40 GHz. This typical problem is now undoubtedly attributed to the probe-to-substrate coupling and probe-to-probe coupling which are strongly dependent on the probe geometry. Finally, this cosimulation procedure evidently underlines the need for an optimized deembedding procedure above 200 GHz.

中文翻译:

晶体管高频测量与电磁和SPICE联合仿真分析

太赫兹 (THz) 硅基电子设备正在快速发展。为了保持这种势头,需要开发准确和优化的晶圆上表征程序。在评估无源元件时,可以通过直接使用 EM 仿真工具来验证测得的 s 参数数据。然而,这种验证需要精确地引入部分测量环境,例如探针、焊盘和接入线,以准确预测校准和布局对晶圆上测量的影响。不幸的是,此过程仅限于无源元件。因此,在这项工作中,我们提出了一种使用电磁 SPICE 协同仿真来模拟有源设备测量的新程序。通过这种方法,可以清楚地强调,可以重现在晶体管测量中观察到的测量伪影。测量伪像最具代表性的例子之一涉及 ${f}_{\text {MAX}}$ 的测量和估计,它在所有频段上都不是恒定的。此外,在 40 GHz 以上难以进行测量。这个典型的问题现在无疑归因于强烈依赖于探针几何形状的探针到衬底耦合和探针到探针耦合。最后,这种协同仿真程序显然强调了对 200 GHz 以上的优化去嵌入程序的需求。测量很难在 40 GHz 以上进行。这个典型的问题现在无疑归因于强烈依赖于探针几何形状的探针到衬底耦合和探针到探针耦合。最后,这种协同仿真程序显然强调了对 200 GHz 以上的优化去嵌入程序的需求。测量很难在 40 GHz 以上进行。这个典型的问题现在无疑归因于强烈依赖于探针几何形状的探针到衬底耦合和探针到探针耦合。最后,这种协同仿真程序显然强调了对 200 GHz 以上的优化去嵌入程序的需求。
更新日期:2020-11-01
down
wechat
bug