当前位置: X-MOL 学术IEEE J. Photovolt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temporary Recovery of the Defect Responsible for Light- and Elevated Temperature-Induced Degradation: Insights Into the Physical Mechanisms Behind LeTID
IEEE Journal of Photovoltaics ( IF 3 ) Pub Date : 2020-11-01 , DOI: 10.1109/jphotov.2020.3025240
Wolfram Kwapil 1 , Jonas Schon 1 , Tim Niewelt 1 , Martin C. Schubert 2
Affiliation  

The effect of light- and elevated temperature-induced degradation (LeTID) can be nonpermanently reversed by charge carrier injection below the degradation temperature (commonly used degradation temperatures are above ∼70 °C). In this study, we show that the rate of temporary recovery depends strongly on the excess carrier density. We observe that the order of the reaction changes from pseudo-zero to first with increasing injection. The rate decreases slightly with increasing temperature. Since the samples can go through multiple degradation/recovery cycles without distinct changes in the degradation kinetics, the experimentally accessible recovered and degraded states are interpreted as manifestations of the equilibrium concentrations of the defect responsible for LeTID at different temperatures. Based on our observations, we argue that the process underlying LeTID degradation is the dissociation of a precursor rather than an association of two or more components. In light of the relation between LeTID susceptibility and bulk hydrogen concentration, we hypothesize that the LeTID precursor dissociates into the LeTID defect and monatomic hydrogen. Numerical simulations of the coupled rate equations including hydrogen interactions well reproduce the experimental observations; according to these results, the presence of a sink for the atomic hydrogen such as dopant atoms is paramount for the LeTID degradation.

中文翻译:

导致光和高温引起的退化的缺陷的临时恢复:深入了解 LeTID 背后的物理机制

光和高温诱导的降解 (LeTID) 的影响可以通过低于降解温度(常用的降解温度高于 70°C)的电荷载流子注入来非永久性地逆转。在这项研究中,我们表明临时恢复的速度很大程度上取决于多余的载流子密度。我们观察到随着注入的增加,反应的顺序从伪零变为第一。随着温度的升高,该速率略有下降。由于样品可以经历多次降解/恢复循环而降解动力学没有明显变化,因此实验上可达到的恢复和降解状态被解释为负责 LeTID 的缺陷在不同温度下的平衡浓度的表现。根据我们的观察,我们认为,LeTID 降解的潜在过程是前体的解离,而不是两种或多种成分的结合。根据 LeTID 敏感性与体氢浓度之间的关系,我们假设 LeTID 前体分解为 LeTID 缺陷和单原子氢。包括氢相互作用在内的耦合速率方程的数值模拟很好地再现了实验观察结果;根据这些结果,原子氢(例如掺杂原子)的汇的存在对于 LeTID 降解至关重要。我们假设 LeTID 前体分解为 LeTID 缺陷和单原子氢。包括氢相互作用在内的耦合速率方程的数值模拟很好地再现了实验观察结果;根据这些结果,原子氢(例如掺杂原子)的汇的存在对于 LeTID 降解至关重要。我们假设 LeTID 前体分解为 LeTID 缺陷和单原子氢。包括氢相互作用在内的耦合速率方程的数值模拟很好地再现了实验观察结果;根据这些结果,原子氢(例如掺杂原子)的汇的存在对于 LeTID 降解至关重要。
更新日期:2020-11-01
down
wechat
bug