当前位置: X-MOL 学术IEEE J. Photovolt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three Bypass Diodes Architecture at the Limit
IEEE Journal of Photovoltaics ( IF 3 ) Pub Date : 2020-11-01 , DOI: 10.1109/jphotov.2020.3021348
Robert Witteck , Michael Siebert , Susanne Blankemeyer , Henning Schulte-Huxel , Marc Kontges

In this work, we demonstrate that partial shading of one solar cell in a state-of-the-art monocrystalline photovoltaic module with three bypass diodes results in hot cells with critical peak temperatures of 164 $^\circ$C. We examine two solar modules in the IEC 61215-2 MQT 09 hot-spot endurance test, one with 367.3 W$_\text{P}$ featuring 72 full-cells and the other with 388.6 W$_\text{P}$ featuring 144 half-cells. For the solar module with 72 solar cells, we measure a maximum temperature of 164 $^\circ$C, which results in a degradation of the encapsulation material and increases the risk of solar module failure. The high temperature results from the hot cell effect due to the power dissipation in the reverse-biased solar cell caused by partial shading. Our experiments show that the half-cell solar module is advantageous in terms of solar cell shading compared to the full-cell solar module. Although the half-cell solar module has a higher power output than the full-cell solar module, we measure a cooler peak temperature of 150 $^\circ$C. However, under certain shading conditions, the half-cell solar module can exhibit similar temperatures as the full-cell solar module. Based on our experimental results, we develop an electrical and a thermal model to predict the temperature of novel high-power solar modules with solar cells from larger silicon wafer formats in case of partial cell shading. Our predictions consider the trends of further increasing solar cell and module efficiencies, larger silicon wafer formats, and larger solar modules. We simulate a maximum peak temperature of 176 $^\circ$C at the solar module's surface, which significantly increases the risk of solar module failure. Our results show that new high-power solar modules employing solar cells that are made from larger silicon wafer formats need a new protection against overheating. Three bypass diodes per solar module are no longer sufficient.

中文翻译:

极限三旁路二极管架构

在这项工作中,我们证明了在具有三个旁路二极管的最先进的单晶光伏模块中对一个太阳能电池进行部分遮蔽会导致热电池的临界峰值温度为 164 $^\circ$C. 我们在 IEC 61215-2 MQT 09 热点耐久性测试中检查了两个太阳能模块,一个具有 367.3 W$_\text{P}$ 具有 72 个全电池,另一个具有 388.6 W$_\text{P}$具有 144 个半电池。对于具有 72 个太阳能电池的太阳能模块,我们测得的最高温度为 164 $^\circ$C,这会导致封装材料退化并增加太阳能模块故障的风险。高温是由部分遮光引起的反向偏置太阳能电池中的功率耗散引起的热电池效应造成的。我们的实验表明,与全电池太阳能模块相比,半电池太阳能模块在太阳能电池遮光方面具有优势。虽然半片太阳能模块的功率输出比全片太阳能模块高,但我们测得的较低峰值温度为 150 $^\circ$C. 但是,在某些遮光条件下,半片太阳能模块可以表现出与全片太阳能模块相似的温度。根据我们的实验结果,我们开发了一个电气和热模型,以在部分电池遮蔽的情况下预测具有来自较大硅晶片格式的太阳能电池的新型高功率太阳能模块的温度。我们的预测考虑了进一步提高太阳能电池和模块效率、更大的硅晶片格式和更大的太阳能模块的趋势。我们模拟最高峰值温度为 176 $^\circ$C 在太阳能模块表面,这会显着增加太阳能模块故障的风险。我们的结果表明,采用太阳能电池的新型高功率太阳能模块需要由更大的硅晶片格式制成,需要一种新的过热保护措施。每个太阳能模块三个旁路二极管已不再足够。
更新日期:2020-11-01
down
wechat
bug