当前位置: X-MOL 学术Math. Comp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Convergence analysis of quasi-Monte Carlo sampling for quantile and expected shortfall
Mathematics of Computation ( IF 2 ) Pub Date : 2020-07-20 , DOI: 10.1090/mcom/3555
Zhijian He , Xiaoqun Wang

Quantiles and expected shortfalls are usually used to measure risks of stochastic systems, which are often estimated by Monte Carlo methods. This paper focuses on the use of quasi-Monte Carlo (QMC) method, whose convergence rate is asymptotically better than Monte Carlo in the numerical integration. We first prove the convergence of QMC-based quantile estimates under very mild conditions, and then establish a deterministic error bound of $O(N^{-1/d})$ for the quantile estimates, where $d$ is the dimension of the QMC point sets used in the simulation and $N$ is the sample size. Under certain conditions, we show that the mean squared error (MSE) of the randomized QMC estimate for expected shortfall is $o(N^{-1})$. Moreover, under stronger conditions the MSE can be improved to $O(N^{-1-1/(2d-1)+\epsilon})$ for arbitrarily small $\epsilon>0$.

中文翻译:

准蒙特卡罗采样的分位数和预期短缺的收敛分析

分位数和预期缺口通常用于衡量随机系统的风险,通常通过蒙特卡罗方法进行估计。本文重点介绍了拟蒙特卡罗(QMC)方法的使用,其收敛速度在数值积分上渐近优于蒙特卡罗。我们首先证明了基于 QMC 的分位数估计在非常温和的条件下的收敛性,然后为分位数估计建立了 $O(N^{-1/d})$ 的确定性误差界限,其中 $d$ 是模拟中使用的 QMC 点集,$N$ 是样本大小。在某些条件下,我们表明预期短缺的随机 QMC 估计的均方误差 (MSE) 是 $o(N^{-1})$。此外,在更强的条件下,对于任意小的 $\epsilon>0$,MSE 可以改进为 $O(N^{-1-1/(2d-1)+\epsilon})$。
更新日期:2020-07-20
down
wechat
bug