当前位置: X-MOL 学术Fire Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the Performance of Parallel Air-Cooled Structure and Optimized Design for Lithium-Ion Battery Module
Fire Technology ( IF 3.4 ) Pub Date : 2020-07-28 , DOI: 10.1007/s10694-020-01020-x
Shuai Pan , Changwei Ji , Shuofeng Wang , Bing Wang

Temperature and temperature consistency have an important effect on the effective performance and thermal safety of lithium-ion batteries. Huge temperature inconsistency can lead to the behavior of overcharge and overdischarge so that it improves the risk of fire and thermal runaway. Temperature rise and heat generation rate during discharging under adiabatic condition are measured by experiments. Based on the conclusion and data obtained by experiments, the finite element model of traditional and optimized parallel air-cooled structure are built by COMSOL Multiphysics 5.3a®. Meanwhile, the problem of flow inhomogeneity in parallel air-cooled structure and the cooling performance of optimized design are researched and discussed. Obvious temperature inconsistency is observed inside the battery module with a traditional cooling structure. Adding a fan on the bottom of module contributes to decay the maximum temperature and improve the temperature consistency effectively. The average temperature difference is maintained at about 1.4°C when the velocity of inlet air exceeds 7 m s−1, which is merely half of that in traditional structure. Temperature difference inside battery module is smaller with the rise of inlet air velocity. Moreover, temperature consistency could be improved by increasing the radius of fan or setting the outlet on the right above of battery module.

中文翻译:

锂离子电池模块并联风冷结构性能研究及优化设计

温度和温度一致性对锂离子电池的有效性能和热安全性有重要影响。巨大的温度不一致会导致过度充电和过度放电的行为,从而提高火灾和热失控的风险。通过实验测量了绝热条件下放电过程中的温升和发热率。基于实验得出的结论和数据,利用COMSOL Multiphysics 5.3a®建立了传统和优化后并联风冷结构的有限元模型。同时,对并联风冷结构中的流动不均匀问题和优化设计的冷却性能进行了研究和讨论。在采用传统冷却结构的电池模块内部观察到明显的温度不一致。在模块底部加装风扇,有助于衰减最高温度,有效提高温度一致性。当进风速度超过7 m s−1时,平均温差保持在1.4°C左右,仅为传统结构的一半。电池模块内部的温差随着进风速度的升高而减小。此外,可以通过增加风扇半径或将出口设置在电池模块的正上方来提高温度一致性。电池模块内部的温差随着进风速度的升高而变小。此外,可以通过增加风扇半径或将出口设置在电池模块的正上方来提高温度一致性。电池模块内部的温差随着进风速度的升高而减小。此外,可以通过增加风扇半径或将出口设置在电池模块的正上方来提高温度一致性。
更新日期:2020-07-28
down
wechat
bug