当前位置: X-MOL 学术Biomacromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations
Biomacromolecules ( IF 6.2 ) Pub Date : 2020-10-19 , DOI: 10.1021/acs.biomac.0c01184
Qiyun Tang 1 , Christian Rossner 2, 3 , Philipp Vana 2 , Marcus Müller 1
Affiliation  

The kinetics of forming multifunctional nanostructures, such as nanotheranostic superstructures, is often highly protracted, involving macroscopic time scales and resulting in nanostructures that correspond to kinetically stable states rather than thermodynamic equilibrium. Predicting such kinetically stable nanostructures becomes a great challenge due to the widely different, relevant time scales that are implicated in the formation kinetics of nano-objects. We develop a methodology, integral of first-passage times from constrained simulations (IFS), to predict kinetically stable, planet–satellite nanotheranostic superstructures. The simulation results are consistent with our experimental observations. The developed methodology enables the exploration of time scales from molecular vibrations of 10–3 ns toward macroscopic scales, 1010 ns, which permits the rational design and prediction of kinetically stable nanotheranostic superstructures for applications in nanomedicine.

中文翻译:

动力学稳定的纳米热超结构的预测:第一次模拟时间的积分。

形成多功能纳米结构(例如纳米热超结构)的动力学通常非常漫长,涉及宏观时间尺度,并导致纳米结构对应于动力学稳定状态而不是热力学平衡。由于与纳米物体的形成动力学有关的广泛不同的相关时间尺度,预测这种动力学稳定的纳米结构成为一个巨大的挑战。我们开发了一种方法,该方法是通过从受限模拟(IFS)中获得首次通过时间的积分来预测动力学稳定的行星-卫星纳米热超结构。仿真结果与我们的实验观察结果一致。先进的方法论能够从10 –3的分子振动中探索时间尺度ns朝着宏观尺度10 10 ns的方向移动,这允许合理设计和预测用于纳米医学的动力学稳定的纳米热超结构。
更新日期:2020-12-14
down
wechat
bug