当前位置: X-MOL 学术bioRxiv. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A frameshift mutation is repaired through nonsense-mediated gene revising in E. coli
bioRxiv - Genetics Pub Date : 2020-10-19 , DOI: 10.1101/069971
Xiaolong Wang , Xuxiang Wang , Chunyan Li , Haibo Peng , Yalei Wang , Gang Chen , Jianye Zhang

The molecular mechanisms for repairing DNA damages and point mutations have been well understood but it remains unclear how a frameshift mutation is repaired. Here we report that frameshift reversion occurs in E. coli more frequently than expected and appears to be a targeted gene repair signaled by premature termination codons (PTCs), producing high-level variations in the repaired genes. Genome resequencing shows that the revertant genome is highly stable, and the single-molecule variations in the repaired genes are derived from RNA editing. A multi-omics analysis shows that the expression levels change greatly in most the DNA and RNA manipulating genes. DNA replication, transcription, RNA editing, RNA degradation, nucleotide excision repair, mismatch repair, and homologous recombination were upregulated in the frameshift or revertant, but the base excision repair was not. Moreover, genes and transposons in a duplicate region silenced in wild type E. coli were activated in the frameshift. Finally, we propose a nonsense-mediated gene revising (NMGR) model for frame repair, which also acts as a driving force for molecular evolution. In essence, nonsense mRNAs are recognized, edited, and transported to template the repair of the coding gene by RNA-directed DNA repair, nucleotide excision, mismatch repair, and homologous recombination. Thanks to NMGR, the mutation rate temporarily rises in a frameshift gene, bringing genetic diversity while repairing the frameshift mutation and accelerating the evolution process without a high mutation rate in the genome.

中文翻译:

通过无意义介导的大肠杆菌基因修饰修复移码突变

修复DNA损伤和点突变的分子机制已广为人知,但仍不清楚如何修复移码突变。在这里,我们报道移码回复在大肠杆菌中的发生频率比预期的要高,并且似乎是由过早终止密码子(PTC)发出信号的靶向基因修复,在修复的基因中产生高水平的变异。基因组重测序表明,回复基因组非常稳定,修复后的基因中的单分子变异来自RNA编辑。多组学分析表明,在大多数DNA和RNA操纵基因中,表达水平变化很大。DNA复制,转录,RNA编辑,RNA降解,核苷酸切除修复,错配修复和同源重组在移码或回复序列中上调,但基础切除修复不是。而且,在移码中激活了在野生型大肠杆菌中沉默的重复区域中的基因和转座子。最后,我们提出了一个无义介导的基因修复(NMGR)模型用于框架修复,它也可以作为分子进化的驱动力。本质上,无意义的mRNA被识别,编辑和运输,以通过RNA定向的DNA修复,核苷酸切除,错配修复和同源重组对编码基因进行修复。多亏了NMGR,移码基因中的突变率暂时升高,从而在修复移码突变的同时带来了遗传多样性,并加速了进化过程,而基因组中的突变率却不高。大肠杆菌在移码中被激活。最后,我们提出了一个无义介导的基因修复(NMGR)模型用于框架修复,它也可以作为分子进化的驱动力。本质上,无意义的mRNA被识别,编辑和运输,以通过RNA定向的DNA修复,核苷酸切除,错配修复和同源重组对编码基因进行修复。多亏了NMGR,移码基因中的突变率暂时升高,从而在修复移码突变的同时带来了遗传多样性,并加速了进化过程,而基因组中的突变率却不高。大肠杆菌在移码中被激活。最后,我们提出了一个无义介导的基因修复(NMGR)模型用于框架修复,它也可以作为分子进化的驱动力。本质上,无意义的mRNA被识别,编辑和运输,以通过RNA定向的DNA修复,核苷酸切除,错配修复和同源重组对编码基因进行修复。多亏了NMGR,移码基因中的突变率暂时升高,从而在修复移码突变的同时带来了遗传多样性,并加速了进化过程,而基因组中的突变率却不高。然后通过RNA定向的DNA修复,核苷酸切除,错配修复和同源重组将其编码模板的修复转运到模板中。多亏了NMGR,移码基因中的突变率暂时升高,从而在修复移码突变的同时带来了遗传多样性,并加速了进化过程,而基因组中的突变率却不高。然后通过RNA定向的DNA修复,核苷酸切除,错配修复和同源重组将其编码模板的修复转运到模板中。多亏了NMGR,移码基因中的突变率暂时升高,从而在修复移码突变的同时带来了遗传多样性,并加速了进化过程,而基因组中的突变率却不高。
更新日期:2020-10-20
down
wechat
bug