当前位置: X-MOL 学术Entropy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Information–Theoretic Radar Waveform Design under the SINR Constraint
Entropy ( IF 2.7 ) Pub Date : 2020-10-20 , DOI: 10.3390/e22101182
Yu Xiao , Zhenghong Deng , Tao Wu

This study investigates the information–theoretic waveform design problem to improve radar performance in the presence of signal-dependent clutter environments. The goal was to study the waveform energy allocation strategies and provide guidance for radar waveform design through the trade-off relationship between the information theory criterion and the signal-to-interference-plus-noise ratio (SINR) criterion. To this end, a model of the constraint relationship among the mutual information (MI), the Kullback–Leibler divergence (KLD), and the SINR is established in the frequency domain. The effects of the SINR value range on maximizing the MI and KLD under the energy constraint are derived. Under the constraints of energy and the SINR, the optimal radar waveform method based on maximizing the MI is proposed for radar estimation, with another method based on maximizing the KLD proposed for radar detection. The maximum MI value range is bounded by SINR and the maximum KLD value range is between 0 and the Jenson–Shannon divergence (J-divergence) value. Simulation results show that under the SINR constraint, the MI-based optimal signal waveform can make full use of the transmitted energy to target information extraction and put the signal energy in the frequency bin where the target spectrum is larger than the clutter spectrum. The KLD-based optimal signal waveform can therefore make full use of the transmitted energy to detect the target and put the signal energy in the frequency bin with the maximum target spectrum.

中文翻译:

SINR约束下的信息理论雷达波形设计

本研究调查了信息理论波形设计问题,以在存在信号相关杂波环境的情况下提高雷达性能。目的是通过信息论准则和信干噪比(SINR)准则之间的权衡关系研究波形能量分配策略并为雷达波形设计提供指导。为此,在频域中建立了互信息(MI)、Kullback-Leibler 散度(KLD)和SINR 之间的约束关系模型。推导出了在能量约束下SINR值范围对最大化MI和KLD的影响。在能量和SINR的约束下,提出了基于MI最大化的最优雷达波形方法进行雷达估计,使用另一种基于最大化雷达检测建议的 KLD 的方法。最大 MI 值范围受 SINR 限制,最大 KLD 值范围介于 0 和 Jenson-Shannon 散度 (J-divergence) 值之间。仿真结果表明,在SINR约束下,基于MI的最优信号波形可以充分利用传输能量进行目标信息提取,将信号能量置于目标频谱大于杂波频谱的频率区间。因此,基于KLD的最优信号波形可以充分利用发射的能量来检测目标,并将信号能量放入目标频谱最大的频率仓中。最大 MI 值范围受 SINR 限制,最大 KLD 值范围介于 0 和 Jenson-Shannon 散度 (J-divergence) 值之间。仿真结果表明,在SINR约束下,基于MI的最优信号波形可以充分利用传输能量进行目标信息提取,将信号能量置于目标频谱大于杂波频谱的频率区间。因此,基于KLD的最优信号波形可以充分利用发射的能量来检测目标,并将信号能量放入目标频谱最大的频率仓中。最大 MI 值范围受 SINR 限制,最大 KLD 值范围介于 0 和 Jenson-Shannon 散度 (J-divergence) 值之间。仿真结果表明,在SINR约束下,基于MI的最优信号波形可以充分利用传输能量进行目标信息提取,将信号能量置于目标频谱大于杂波频谱的频率区间。因此,基于KLD的最优信号波形可以充分利用发射的能量来检测目标,并将信号能量放入目标频谱最大的频率仓中。基于MI的最优信号波形可以充分利用传输能量进行目标信息提取,将信号能量置于目标频谱大于杂波频谱的频率区间。因此,基于KLD的最优信号波形可以充分利用发射的能量来检测目标,并将信号能量放入目标频谱最大的频率仓中。基于MI的最优信号波形可以充分利用传输能量进行目标信息提取,将信号能量置于目标频谱大于杂波频谱的频率区间。因此,基于KLD的最优信号波形可以充分利用发射的能量来检测目标,并将信号能量放入目标频谱最大的频率仓中。
更新日期:2020-10-20
down
wechat
bug