当前位置: X-MOL 学术Solid State Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of hard magnetic properties in rapidly quenched Zr–Co–Fe–B ribbons through vacuum annealing
Solid State Communications ( IF 2.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ssc.2020.114118
Nithya Christopher , Kritika Anand , Nidhi Singh

Abstract In the present work, the importance of vacuum annealing on the nanostructured Zr2Co9.5Fe1.5B ribbons fabricated through rapid solidification method was investigated for their hard magnetic properties. Optimized vacuum annealing promotes the formation of rhombohedral Co5.1Zr hard magnetic phase, in addition to the orthorhombic Co5.1Zr, fcc-Co, Co23Zr6 and Co3ZrB2 phases, which were formed via melt spinning. Remanent magnetization (Mr) and coercivity (HC) was found to enhance post-annealing from 22.8 emu/g and 1.24 kOe in as melt-spun (MS) ribbons to 50.3 emu/g and 1.64 kOe for the ribbons annealed at 550 °C/1 h. Furthermore, the optimally annealed ribbons contribute towards an increase in magnetic energy product (BH)max ~ 2 MGOe in comparison to as-spun ribbons having 0.7 MGOe. Annealing process leads to enhancement of hard magnetic properties through the crystallization of rhombohedral Co5.1Zr hard magnetic phase. To account for an increase in coercivity, the coercivity mechanism of the annealed optimized ribbon was also studied and is attributed to the nucleation mechanism as deduced from the measurement of minor loops. The effect of annealing conditions on the phase evolution, microstructure and magnetic behaviour of Zr2Co9.5Fe1.5B MS ribbons, indicates that appropriate control of the thermal annealing schedule is a key to achieve high remanence, coercivity as well as magnetic energy product. The nanostructured Zr2Co9.5Fe1.5B MS ribbons could serve as a potential candidate for rare-earth free permanent magnet materials.

中文翻译:

通过真空退火提高快速淬火 Zr-Co-Fe-B 薄带的硬磁性能

摘要 在目前的工作中,真空退火对通过快速凝固方法制造的纳米结构 Zr2Co9.5Fe1.5B 薄带的硬磁性能的重要性进行了研究。除了通过熔体纺丝形成的正交 Co5.1Zr、fcc-Co、Co23Zr6 和 Co3ZrB2 相之外,优化的真空退火促进了菱形 Co5.1Zr 硬磁相的形成。发现剩磁 (Mr) 和矫顽力 (HC) 将后退火从熔纺 (MS) 带材的 22.8 emu/g 和 1.24 kOe 提高到 550 °C 退火的带材的 50.3 emu/g 和 1.64 kOe /1 小时。此外,与具有 0.7 MGOe 的初纺带相比,最佳退火带有助于增加磁能积 (BH)max ~ 2 MGOe。退火过程通过菱面体 Co5.1Zr 硬磁相的结晶导致硬磁性能的增强。为了说明矫顽力的增加,还研究了退火优化带的矫顽力机制,并将其归因于从小环测量中推导出的成核机制。退火条件对 Zr2Co9.5Fe1.5B MS 薄带相演化、微观结构和磁行为的影响表明,适当控制热退火程序是实现高剩磁、矫顽力和磁能积的关键。纳米结构的 Zr2Co9.5Fe1.5B MS 带可作为无稀土永磁材料的潜在候选材料。为了说明矫顽力的增加,还研究了退火优化带的矫顽力机制,并将其归因于从小环测量中推导出的成核机制。退火条件对 Zr2Co9.5Fe1.5B MS 薄带相演化、微观结构和磁行为的影响表明,适当控制热退火程序是实现高剩磁、矫顽力和磁能积的关键。纳米结构的 Zr2Co9.5Fe1.5B MS 带可作为无稀土永磁材料的潜在候选材料。为了说明矫顽力的增加,还研究了退火优化带的矫顽力机制,并将其归因于从小环测量中推导出的成核机制。退火条件对 Zr2Co9.5Fe1.5B MS 薄带相演化、微观结构和磁行为的影响表明,适当控制热退火程序是实现高剩磁、矫顽力和磁能积的关键。纳米结构的 Zr2Co9.5Fe1.5B MS 带可作为无稀土永磁材料的潜在候选材料。退火条件对 Zr2Co9.5Fe1.5B MS 薄带相演化、微观结构和磁行为的影响表明,适当控制热退火程序是实现高剩磁、矫顽力和磁能积的关键。纳米结构的 Zr2Co9.5Fe1.5B MS 带可作为无稀土永磁材料的潜在候选材料。退火条件对 Zr2Co9.5Fe1.5B MS 薄带相演化、微观结构和磁行为的影响表明,适当控制热退火程序是实现高剩磁、矫顽力和磁能积的关键。纳米结构的 Zr2Co9.5Fe1.5B MS 带可作为无稀土永磁材料的潜在候选材料。
更新日期:2021-01-01
down
wechat
bug