当前位置: X-MOL 学术Scanning › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New Approach for the AFM-Based Mechanical Characterization of Biological Samples
Scanning ( IF 1.750 ) Pub Date : 2020-10-18 , DOI: 10.1155/2020/2896792
S V Kontomaris 1 , A Malamou 2 , A Stylianou 3, 4
Affiliation  

The AFM nanoindentation technique is a powerful tool for the mechanical characterization of biological samples at the nanoscale. The data analysis of the experimentally obtained results is usually performed using the Hertzian contact mechanics. However, the aforementioned theory can be applied only in cases that the sample is homogeneous and isotropic and presents a linear elastic response. However, biological samples often present depth-dependent mechanical properties, and the Hertzian analysis cannot be used. Thus, in this paper, a different approach is presented, based on a new physical quantity used for the determination of the mechanical properties at the nanoscale. The aforementioned physical quantity is the work done by the indenter per unit volume. The advantages of the presented analysis are significant since the abovementioned magnitude can be used to examine if a sample can be approximated to an elastic half-space. If this approximation is valid, then the new proposed method enables the accurate calculation of Young's modulus. Additionally, it can be used to explore the mechanical properties of samples that are characterized by a depth-dependent mechanical behavior. In conclusion, the proposed analysis presents an accurate yet simple technique for the determination of the mechanical properties of biological samples at the nanoscale that can be also used beyond the Hertzian limit.

中文翻译:

基于 AFM 的生物样品机械表征的新方法

AFM 纳米压痕技术是在纳米尺度上对生物样品进行机械表征的有力工具。实验所得结果的数据分析通常使用赫兹接触力学进行。然而,上述理论仅适用于样品均质且各向同性且呈现线弹性响应的情况。然而,生物样品往往呈现出与深度相关的机械特性,无法使用赫兹分析。因此,在本文中,基于用于确定纳米级机械性能的新物理量,提出了一种不同的方法。上述物理量是压头单位体积所做的功。所提出的分析的优点是显着的,因为上述幅度可用于检查样本是否可以近似为弹性半空间。如果此近似值有效,则新提出的方法可以准确计算杨氏模量。此外,它还可用于探索以深度相关机械行为为特征的样品的机械性能。总之,所提出的分析提出了一种准确而简单的技术,用于确定纳米级生物样品的机械性能,该技术也可用于超出赫兹限制的范围。此外,它还可用于探索以深度相关机械行为为特征的样品的机械性能。总之,所提出的分析提出了一种准确而简单的技术,用于确定纳米级生物样品的机械性能,该技术也可用于超出赫兹限制的范围。此外,它还可用于探索以深度相关机械行为为特征的样品的机械性能。总之,所提出的分析提出了一种准确而简单的技术,用于确定纳米级生物样品的机械性能,该技术也可用于超出赫兹限制的范围。
更新日期:2020-10-18
down
wechat
bug