当前位置: X-MOL 学术Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Analytical Prediction of Thermal Distribution and Defect Generation of Inconel 718 by Selective Laser Melting
Applied Sciences ( IF 2.838 ) Pub Date : 2020-10-19 , DOI: 10.3390/app10207300
Huadong Yang , Zhen Li , Siqi Wang

In selective laser melting, the rapid change of the temperature field caused by the rapid movement of the laser causes the instability of the melt pool flow, resulting in a generation of defects, such as lack of fusion, keyholing and balling effect, which greatly affect the performance of parts. In order to fully understand the temperature distribution and defect generation process of selective laser melting (SLM), experimental research, numerical simulation and analytical methods are mainly applied. The analytical method is suitable for the determination of the optimal process parameters because it is simple and consumes fewer resources. In a simulation, the absorptivity of the material is usually regarded as a constant, but experimental studies have shown that absorptivity is related to temperature, laser power, scanning speed, layer thickness and other process parameters. Considering the dynamics of thermal physical properties of Inconel 718, an improved analytical method was proposed and successfully applied to thermal analysis and the prediction of melt pool size. By comparing with the results of finite element simulation, experiment and other analytical solutions, the ease of use and effectiveness of the method are verified. Based on the prediction of the melt pool and the criterion of internal defects, the combination of process parameters that produce internal defects is calculated, which will make it possible to quickly obtain ideal process parameters.

中文翻译:

Inconel 718选择性激光熔化的热分布和缺陷产生的分析预测

在选择性激光熔化中,由激光的快速运动引起的温度场的快速变化导致熔池流动的不稳定性,从而导致产生缺陷,例如缺乏熔合,键眼和球化效应,这些缺陷会大大影响零件的性能。为了充分理解选择性激光熔化(SLM)的温度分布和缺陷产生过程,主要应用了实验研究,数值模拟和分析方法。该分析方法简单易行,消耗资源少,因此适合确定最佳工艺参数。在模拟中,材料的吸收率通常被视为常数,但是实验研究表明,吸收率与温度,激光功率,扫描速度,层厚度和其他工艺参数。考虑到Inconel 718的热物理性质的动态,提出了一种改进的分析方法,并将其成功地应用于热分析和熔池尺寸的预测。通过与有限元模拟,实验和其他解析解的结果进行比较,验证了该方法的易用性和有效性。根据熔池的预测和内部缺陷的判据,可以计算出产生内部缺陷的工艺参数的组合,从而可以快速获得理想的工艺参数。提出了一种改进的分析方法,并将其成功地应用于热分析和熔池尺寸的预测。通过与有限元模拟,实验和其他解析解的结果进行比较,验证了该方法的易用性和有效性。根据熔池的预测和内部缺陷的标准,可以计算出产生内部缺陷的工艺参数的组合,从而可以快速获得理想的工艺参数。提出了一种改进的分析方法,并将其成功地应用于热分析和熔池尺寸的预测。通过与有限元模拟,实验和其他解析解的结果进行比较,验证了该方法的易用性和有效性。根据熔池的预测和内部缺陷的标准,可以计算出产生内部缺陷的工艺参数的组合,从而可以快速获得理想的工艺参数。
更新日期:2020-10-19
down
wechat
bug