当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization Strategies for in Situ Groundwater Remediation by a Vertical Circulation Well Based on Particle‐Tracking and Node‐Dependent Finite Difference Methods
Water Resources Research ( IF 5.4 ) Pub Date : 2020-10-19 , DOI: 10.1029/2020wr027396
Qi Zhu 1 , Zhang Wen 1 , Hongbin Zhan 1, 2 , Songhu Yuan 3
Affiliation  

Both theory and application of multispecies reactive transport for in situ groundwater bioremediation involving a vertical circulation well (VCW) are not fully understood despite its importance and common usage in aquifer remediation practices. This study proposes novel approaches including two methods for design and remediation prediction of a VCW system, which involves multispecies, multiphase, and microbially enhanced reactive transport process. One is particle‐tracking method, which depicts the trajectories of particles released from an injection chamber; the other is node‐dependent finite difference (NDFD) method, which describes the advection‐dispersion process based on the inflow and outflow directions at each node. The numerical results demonstrate that the particle‐tracking method works well by yielding a useful index, that is, the recovery ratio, which helps optimize the in situ preliminary remediation screening. When biochemical parameters, dispersivities, and in situ contaminated conditions are known after the preliminary screening, the NDFD method performs better than the conventional Laplace transform finite difference method in terms of describing multispecies reactive transport with multiple phases in a VCW system. The proposed particle‐tracking method and NDFD methods are employed to elucidate different effects of factors such as injection mode, hydraulic conductivity anisotropy ratio, distance between injection and extraction screened intervals, and injection/extraction rate on recovery and removal ratios. Our findings suggest that both methods are effective tools for optimization and prediction of VCW remediation in an anisotropic aquifer.

中文翻译:

基于粒子追踪和节点相关有限差分法的垂直循环井原位地下水修复优化策略

尽管涉及垂直循环井(VCW)的原位地下水生物修复多物种反应性运输的理论和应用都尚未得到充分理解,尽管它在含水层修复实践中很重要且很普遍。这项研究提出了一种新颖的方法,包括用于VCW系统的设计和修复预测的两种方法,该方法涉及多物种,多相和微生物增强的反应性转运过程。一种是粒子跟踪方法,它描述了从注入室释放的粒子的轨迹。另一种是依赖于节点的有限差分(NDFD)方法,该方法根据每个节点的流入和流出方向描述对流扩散过程。数值结果表明,粒子跟踪方法通过产生有用的指标即:回收率,有助于优化原位初步修复筛选。初步筛选后,如果已知生化参数,分散性和原位污染条件,则NDFD方法在描述VCW系统中具有多相的多物种反应输运方面比传统的Laplace变换有限差分方法更好。提出的粒子跟踪方法和NDFD方法用于阐明因素的不同影响,例如注入方式,水力传导率各向异性比,注入和提取筛选间隔之间的距离以及注入/提取速率对回收率和去除率的影响。我们的发现表明,这两种方法都是优化和预测各向异性含水层中VCW修复的有效工具。这有助于优化原位初步修复筛选。初步筛选后,如果已知生化参数,分散性和原位污染条件,则NDFD方法在描述VCW系统中具有多相的多物种反应输运方面比传统的Laplace变换有限差分方法更好。提出的粒子跟踪方法和NDFD方法用于阐明因素的不同影响,例如注入方式,水力传导率各向异性比,注入和提取筛选间隔之间的距离以及注入/提取速率对回收率和去除率的影响。我们的发现表明,这两种方法都是优化和预测各向异性含水层中VCW修复的有效工具。这有助于优化原位初步修复筛选。初步筛选后,如果已知生化参数,分散性和原位污染条件,则NDFD方法在描述VCW系统中具有多相的多物种反应输运方面比传统的Laplace变换有限差分方法更好。提出的粒子跟踪方法和NDFD方法用于阐明因素的不同影响,例如注入方式,水力传导率各向异性比,注入和提取筛选间隔之间的距离以及注入/提取速率对回收率和去除率的影响。我们的发现表明,这两种方法都是优化和预测各向异性含水层中VCW修复的有效工具。
更新日期:2020-11-02
down
wechat
bug