当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A digital charge control strategy for reducing the hysteresis in piezoelectric actuators: Analysis, design, and implementation
Precision Engineering ( IF 3.6 ) Pub Date : 2020-10-19 , DOI: 10.1016/j.precisioneng.2020.10.006
Jianpeng Zhong , Rina Nishida , Tadahiko Shinshi

To reduce the cost, complexity and stroke loss due to sensing components in analog charge control, a digital charge control (DCC) strategy for reducing the hysteresis in piezoelectric actuators (PEAs) is presented. In this solution, a current sensor built into the amplifier is used to derive the charge by numerical integration instead of series sensing components. In such an approach the PEA can be directly connected to the amplifier, resulting in no stroke loss. To eliminate the sensed DC and low-frequency current errors, a high pass filter is further incorporated. By analyzing the operating mode and principles, the system and controller design procedures and rules are proposed for the case of impedance balance and then these are extended to the general situation. Based on this approach, an optimized DCC solution without using any passive components is proposed. Finally, the DCC solution is validated by using a single degree of freedom PEA-driven mechanism. To reduce the low-frequency vibration and phase lag, feedback and feedforward control is introduced. Experimental results prove the feasibility and effectiveness of the solution, in which the hysteresis can be reduced to less than 1% of the stroke in the best case. Trajectory tracking can be achieved well up to a frequency of 1000 Hz.



中文翻译:

减少压电执行器滞后的数字电荷控制策略:分析,设计和实现

为了降低由于模拟电荷控制中的感测组件而导致的成本,复杂性和行程损失,提出了一种用于减少压电致动器(PEA)滞后的数字电荷控制(DCC)策略。在该解决方案中,放大器内置的电流传感器用于通过数值积分而不是串联感测组件来导出电荷。通过这种方法,PEA可以直接连接到放大器,因此不会产生行程损失。为了消除感测到的直流和低频电流误差,进一步并入了一个高通滤波器。通过分析工作模式和原理,提出了针对阻抗平衡的系统和控制器的设计程序和规则,然后将其扩展到一般情况。基于这种方法,提出了一种不使用任何无源组件的优化DCC解决方案。最后,通过使用单自由度PEA驱动的机制来验证DCC解决方案。为了减少低频振动和相位滞后,引入了反馈和前馈控制。实验结果证明了该解决方案的可行性和有效性,其中在最佳情况下,磁滞可以减小到行程的1%以下。在高达1000 Hz的频率下可以很好地实现轨迹跟踪。在最佳情况下,磁滞可以减少到行程的1%以下。在高达1000 Hz的频率下可以很好地实现轨迹跟踪。在最佳情况下,磁滞可以减少到行程的1%以下。在高达1000 Hz的频率下可以很好地实现轨迹跟踪。

更新日期:2020-11-04
down
wechat
bug