当前位置: X-MOL 学术Microgravity Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phenomenological Investigation of Drop Manipulation Using Surface Acoustic Waves
Microgravity Science and Technology ( IF 1.8 ) Pub Date : 2020-10-18 , DOI: 10.1007/s12217-020-09839-3
Mahdi Sheikholeslam Noori , Arash Shams Taleghani , Mohammad Taeibi Rahni

This paper aims at the investigation of acoustic streaming produced by surface acoustic waves (SAWs) in a drop. Computational simulation of acoustofluidic phenomenon, using lattice Boltzmann method (LBM), presenting acoustic applications in flow control, and a relatively complete parametric study are the motivations of this work. For this purpose, a computational fluid dynamics modeling based on multi-relaxation time multi-component multiphase color gradient lattice Boltzmann method was used. The simulations were carried out at wave frequencies ranging from 20 MHz to 271 MHz and wave amplitudes ranging from 0.5 nm to about 350 nm. First, the non-dimensional form of Navier-Stokes equations based on this phenomenon is presented in this work and the physics of flow is explained. Then, the consistency of the model and experimental observations is considered and our numerical results pass the physical reals. Based on our results, comparison between Lithium Niobate and Zinc Oxide Silicon devices shows that in the pumping mode, the wet length of drop on Zinc Oxide material is shorter about 10%. Also, drop moves faster on the Zinc Oxide Silicon device (about 20% in 64.5 MHz and 350 nm). Moreover, in the jetting mode, drop is detached, from Zinc Oxide Silicon device, in about 70% shorter time duration. The findings indicate that in the jetting mode a counter rotating vortex pair is formed near the drop, while the vortices are stronger for Zinc Oxide Silicon device. So, in the liquid transport applications, Zinc Oxide Silicon device is more suitable. Other important results which are presented in this work are about the non-dimensional parameters and their ranges in these phenomena. The most important non-dimensional parameters governing the physics of problem are identified. Additionally, the ranges of different physical modes (based on non-dimensional parameters) are determined, using numerical results and experimental data. The results show that in the pumping mode, Reynolds, Weber, and capillary numbers are between 3 and 1400, 10−5-0.02, and 4 × 10−5-2.5 × 10−3, respectively. Also, in the jetting mode, the mentioned parameters are between 757 and 4600, 0.008–0.3, and 0.001–0.006, respectively.



中文翻译:

表面声波对液滴操纵的现象学研究

本文旨在研究一滴表面声波(SAW)产生的声流。使用晶格玻尔兹曼方法(LBM)进行声流体现象的计算模拟,介绍在流控制中的声学应用,以及相对完整的参数研究是这项工作的动机。为此,使用了基于多松弛时间多组分多相颜色梯度格子玻尔兹曼方法的计算流体动力学模型。模拟是在20 MHz至271 MHz的波频率和0.5 nm至约350 nm的波幅范围内进行的。首先,在这项工作中提出了基于这种现象的Navier-Stokes方程的无量纲形式,并解释了流动的物理学。然后,考虑到模型与实验观测值的一致性,并且我们的数值结果超过了实际值。根据我们的结果,铌酸锂和氧化锌硅器件之间的比较表明,在泵送模式下,氧化锌材料上的液滴湿长度缩短了约10%。而且,氧化锌硅器件上的液滴移动速度更快(在64.5 MHz和350 nm中约为20%)。此外,在喷射模式下,液滴从氧化锌硅器件上脱落的时间缩短了约70%。研究结果表明,在喷射模式下,液滴附近会形成反向旋转的涡流对,而对于氧化锌硅器件,涡流更强。因此,在液体运输应用中,氧化锌硅器件更为合适。在这项工作中提出的其他重要结果与这些现象中的无量纲参数及其范围有关。确定了控制问题物理的最重要的无量纲参数。此外,使用数值结果和实验数据确定了不同物理模式的范围(基于无量纲参数)。结果表明,在抽气模式下,雷诺数,韦伯数和毛细管数在3和1400之间,即10-5 -0.02和4×10 -5 -2.5×10 -3。同样,在喷射模式下,上述参数分别在757和4600之间,0.008–0.3和0.001–0.006之间。

更新日期:2020-10-19
down
wechat
bug