当前位置: X-MOL 学术Iran. J. Sci. Technol. Trans. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of Biomolecular Adsorption on a Microcantilever Biosensor Regarding Surface Charge Distribution
Iranian Journal of Science and Technology, Transactions A: Science ( IF 1.7 ) Pub Date : 2020-10-18 , DOI: 10.1007/s40995-020-00967-4
Fouad Mollaei , Abolghasem Naghash , Peiman Aliparast

Background

Researches implement microcantilevers (MCs) as a biosensing technique lately. Various researches develop such platforms experimentally. Herein, simulation is the method of the choice to predict accurate response of the biosensor during design.

Objective

The current study aims to provide a prediction method that enables adequate response order. Such results enable the enhanced design of the sensor. Regarding the nature of the phenomena, the current survey studies the adsorption and the charge distribution on the biosensor using multiscale simulation and also considers their reciprocal.

Approach

The current study provides understanding of the effect of electric potential distribution on simulations of a biosensor based on microcantilever. This study uses molecular dynamics (MD) simulation to calculate the response of the biosensor. Energy method and steering molecular dynamics (SMD) methods are used in discreet media simulation.

Results

Results of nano-electronics show semi-uniform distribution of potential along the sensor’s surface and a linear pattern through the thickness. It is found the deviations in the gradient of potential reach 1e−10 at around 20 nm distance from the edge. The MD simulation regarding total deformation of microcantilever around 190 nm for a corrected charge of the substrate and 366 nm for an un-corrected model; the former coincides better with previous experiments.

Conclusion

Deflection prediction using overall multiscale simulation has good agreement with experimental results within 13% deviation, regarding charge distribution on the substrate of the sensor, though the latter lacks any experimental verifications. Together, SMD analysis and MD energy analysis show the adsorption trend gets more stable as it moves toward full adsorption.



中文翻译:

关于表面电荷分布的微悬臂生物传感器上生物分子吸附的模拟。

背景

最近,研究将微悬臂梁(MC)用作一种生物传感技术。各种研究实验性地开发了这样的平台。在此,仿真是预测设计期间生物传感器的准确响应的选择方法。

目的

当前的研究旨在提供一种使适当的响应顺序成为可能的预测方法。这样的结果使得能够增强传感器的设计。关于现象的性质,当前调查使用多尺度模拟研究了生物传感器上的吸附和电荷分布,并考虑了它们的相互关系。

方法

当前的研究提供了对电位分布对基于微悬臂梁的生物传感器模拟的影响的理解。这项研究使用分子动力学(MD)模拟来计算生物传感器的响应。能量方法和转向分子动力学(SMD)方法用于谨慎的媒体模拟中。

结果

纳米电子学的结果表明,沿传感器表面的电位呈半均匀分布,并且沿厚度方向呈线性分布。发现在距边缘约20 nm处电势梯度的偏差达到1e-10。关于模拟的微悬臂梁的总变形的MD模拟,对于校正后的基板电荷为190 nm,对于未校正的模型为366 nm。前者与先前的实验比较吻合。

结论

关于传感器在基板上的电荷分布,使用整体多尺度模拟进行的挠度预测与偏差在13%以内的实验结果具有良好的一致性,尽管后者缺乏任何实验验证。一起,SMD分析和MD能量分析表明,随着吸附趋向完全吸附,吸附趋势变得更加稳定。

更新日期:2020-10-19
down
wechat
bug