当前位置: X-MOL 学术bioRxiv. Bioeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robotic Multi-Probe-Single-Actuator Inchworm Neural Microdrive
bioRxiv - Bioengineering Pub Date : 2020-10-16 , DOI: 10.1101/2020.10.13.338137
R. D. Smith , I. Kolb , S. Tanaka , A. K. Lee , T. D. Harris , M. Barbic

Electrophysiology is one of the major experimental techniques used in neuroscience. The favorable spatial and temporal resolution as well as the increasingly larger site counts of brain recording electrodes contribute to the popularity and importance of electrophysiology in neuroscience. Such electrodes are typically mechanically placed in the brain to perform acute or chronic freely moving animal measurements. The micro positioners currently used for such tasks employ a single translator per independent probe being placed into the targeted brain region, leading to significant size and weight restrictions. To overcome this limitation, we have developed a miniature robotic multi-probe neural microdrive that utilizes novel phase-change-material-filled resistive heater micro-grippers. The microscopic dimensions, gentle gripping action, independent electronic actuation control, and high packing density of the grippers allow for micrometer-precision independent positioning of multiple arbitrarily shaped parallel neural electrodes with only a single piezo actuator in an inchworm motor configuration. This multi-probe-single-actuator design allows for significant size and weight reduction, as well as remote control and potential automation of the microdrive. We demonstrate accurate placement of multiple independent recording electrodes into the CA1 region of the rat hippocampus in vivo in acute and chronic settings. Thus, our robotic neural microdrive technology is applicable towards basic neuroscience and clinical studies, as well as other multi-probe or multi-sensor micro-positioning applications.

中文翻译:

机器人多探头单执行器尺ch神经微驱动器

电生理学是神经科学中使用的主要实验技术之一。有利的空间和时间分辨率以及大脑记录电极的越来越多的位点计数有助于神经科学中电生理学的普及和重要性。通常将这样的电极机械地放置在大脑中以执行急性或慢性自由移动的动物测量。当前用于此类任务的微型定位器将每个独立的探针使用单个翻译器,将其放置在目标大脑区域中,从而导致尺寸和重量受到很大限制。为克服此限制,我们开发了一种微型机器人多探针神经微驱动器,该驱动器利用了新型相变材料填充的电阻加热器微夹持器。微观尺寸,柔和的抓握动作,独立的电子驱动控制,以及the纸牙的高堆积密度,使得在蠕虫电动机配置中,只有一个压电致动器,即可对多个任意形状的平行神经电极进行微米级精度的独立定位。这种多探头单执行器设计可显着减小尺寸和重量,并实现微驱动器的远程控制和潜在的自动化。我们演示了在急性和慢性环境中将多个独立的记录电极准确地放置到大鼠海马CA1区中。因此,我们的机器人神经微驱动技术适用于基础神经科学和临床研究以及其他多探头或多传感器微定位应用。夹持器的高填充密度可实现在单个蠕虫电机配置中仅使用一个压电致动器就可以对多个任意形状的平行神经电极进行微米精度的独立定位。这种多探头单执行器设计可显着减小尺寸和重量,并实现微驱动器的远程控制和潜在的自动化。我们演示了在急性和慢性环境中将多个独立的记录电极准确地放置到大鼠海马CA1区中。因此,我们的机器人神经微驱动技术适用于基础神经科学和临床研究以及其他多探头或多传感器微定位应用。夹持器的高填充密度可实现在单个蠕虫电机配置中仅使用一个压电致动器就可以对多个任意形状的平行神经电极进行微米精度的独立定位。这种多探头单执行器设计可显着减小尺寸和重量,并实现微驱动器的远程控制和潜在的自动化。我们演示了在急性和慢性环境中将多个独立的记录电极准确地放置到大鼠海马CA1区中。因此,我们的机器人神经微驱动技术适用于基础神经科学和临床研究以及其他多探头或多传感器微定位应用。
更新日期:2020-10-17
down
wechat
bug