当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
Large Very Dense Subgraphs in a Stream of Edges
arXiv - CS - Logic in Computer Science Pub Date : 2020-10-15 , DOI: arxiv-2010.07794
Claire Mathieu; Michel de Rougemont

We study the detection and the reconstruction of a large very dense subgraph in a social graph with $n$ nodes and $m$ edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. \log n)$. A subgraph $S$ is very dense if it has $\Omega(|S|^2)$ edges. We uniformly sample the edges with a Reservoir of size $k=O(\sqrt{n}.\log n)$. Our detection algorithm checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $\Omega(\sqrt{n})$, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.
更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug