当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum chemical accuracy from density functional approximations via machine learning
Nature Communications ( IF 16.6 ) Pub Date : 2020-10-16 , DOI: 10.1038/s41467-020-19093-1
Mihail Bogojeski , Leslie Vogt-Maranto , Mark E. Tuckerman , Klaus-Robert Müller , Kieron Burke

Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry, but accuracies for many molecules are limited to 2-3 kcal mol−1 with presently-available functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but computational costs limit their application to small molecules. In this paper, we leverage machine learning to calculate coupled-cluster energies from DFT densities, reaching quantum chemical accuracy (errors below 1 kcal mol−1) on test data. Moreover, density-based Δ-learning (learning only the correction to a standard DFT calculation, termed Δ-DFT ) significantly reduces the amount of training data required, particularly when molecular symmetries are included. The robustness of Δ-DFT is highlighted by correcting “on the fly” DFT-based molecular dynamics (MD) simulations of resorcinol (C6H4(OH)2) to obtain MD trajectories with coupled-cluster accuracy. We conclude, therefore, that Δ-DFT facilitates running gas-phase MD simulations with quantum chemical accuracy, even for strained geometries and conformer changes where standard DFT fails.



中文翻译:

通过机器学习从密度泛函近似获得量子化学准确性

科恩深水密度泛函理论(DFT)是在化学的大多数分支的标准工具,但对于许多分子精度被限制在2-3千卡摩尔-1与目前可用的泛函。从头开始,例如耦合簇,通常会产生更高的准确性,但是计算成本限制了它们在小分子上的应用。在本文中,我们利用机器学习来计算从DFT密度耦合簇能量,达到量子化学精度(低于1千卡错误摩尔-1上的测试数据)。此外,基于密度的Δ学习(仅学习对标准DFT计算的校正,称为Δ-DFT)大大减少了所需的训练数据量,尤其是当包括分子对称性时。通过校正“动态”间苯二酚(C 6 H 4(OH)2)的基于DFT的分子动力学(MD)模拟来获得具有耦合簇精度的MD轨迹,可以突出Δ -DFT的鲁棒性。因此,我们得出的结论是,即使对于标准DFT失效的应变几何形状和构象异构体变化,Δ -DFT仍有助于以量子化学精度运行气相MD模拟。

更新日期:2020-10-17
down
wechat
bug