当前位置: X-MOL 学术Nanotoxicology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting the effect of phototherapy method on breast cancer cells by mathematical modeling: UV-IR non-ionization radiation with gold nanoparticles
Nanotoxicology ( IF 5 ) Pub Date : 2020-10-16 , DOI: 10.1080/17435390.2020.1814441
Fatemeh Hataminia 1, 2 , Hossein Ghanbari 1
Affiliation  

Abstract

Phototherapy is a minimally invasive oncological treatment strategy in which photon energy is delivered to the tumor tissue. Gold nanoparticles (GNPs) can enhance photothermal or photodynamic phenomena when excited by a wavelength beam in the range of UV-IR. GNPs are used in phototherapy for cancer cell treatment by controlling the physical and chemical conditions. Given the growing application of GNPs for the treatment of breast cancer, predicting the behavior of cancer cells during exposure to GNPs is of prime importance. However, the prediction might be far from reality due to the inherent complexities associated with the conditions of the treatment methods and the mechanisms involved in cell toxicity. This study provides general information by collecting data on the cytotoxicity of GNPs along with this process. Data mining was performed using a mathematical modeling method called SA-LOOCV-GRBF. In this study, eight parameters including particle size, zeta potential, concentration of GNPs in the cell culture medium, incubation time, light exposure time, maximum wavelength absorbance (MAW) of GNPs, irradiation beam wavelength (IW) and light source power density (PD) were measured. In this modeling, these parameters were considered as model inputs, and the cell viability of breast cancer cells after treatment was treated as the model output. As a result, the physical and chemical properties of GNPs as well as their application conditions wield influence on cytotoxicity. The results help select the desired condition for these nanoparticles in the phototherapy of breast cancer cells.



中文翻译:

通过数学模型预测光疗方法对乳腺癌细胞的作用:金纳米颗粒的UV-IR非电离辐射

摘要

光疗是一种微创肿瘤治疗策略,其中光子能量被传递到肿瘤组织。金纳米颗粒(GNP)在被UV-IR范围内的波长光束激发时可以增强光热或光动力现象。通过控制物理和化学条件,GNP在光疗中用于癌细胞治疗。鉴于GNP在治疗乳腺癌方面的应用日益广泛,预测暴露于GNP期间癌细胞的行为至关重要。但是,由于与治疗方法的条件和细胞毒性所涉及的机制相关的内在复杂性,这一预测可能与现实相去甚远。这项研究通过收集与此过程有关的GNP的细胞毒性数据来提供一般信息。使用称为SA-LOOCV-GRBF的数学建模方法进行数据挖掘。在这项研究中,八个参数包括粒径,ζ电位,细胞培养基中GNP的浓度,孵育时间,曝光时间,GNP的最大波长吸收(MAW),照射光束波长(IW)和光源功率密度( PD)被测量。在该建模中,将这些参数视为模型输入,并将处理后的乳腺癌细胞的细胞生存力作为模型输出。结果,GNP的物理和化学性质以及它们的使用条件对细胞毒性产生影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。测量了八个参数,包括粒径,ζ电位,细胞培养基中GNP的浓度,孵育时间,曝光时间,GNP的最大波长吸光度(MAW),照射光束波长(IW)和光源功率密度(PD)。 。在该建模中,将这些参数视为模型输入,并将处理后的乳腺癌细胞的细胞生存力作为模型输出。结果,GNP的物理和化学性质以及它们的使用条件对细胞毒性产生影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。测量了八个参数,包括粒径,ζ电位,细胞培养基中GNP的浓度,孵育时间,曝光时间,GNP的最大波长吸光度(MAW),照射光束波长(IW)和光源功率密度(PD)。 。在该建模中,将这些参数视为模型输入,并将处理后的乳腺癌细胞的细胞生存力作为模型输出。结果,GNP的物理和化学性质以及它们的使用条件对细胞毒性产生影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。测量了GNP的最大波长吸光度(MAW),辐照光束波长(IW)和光源功率密度(PD)。在该建模中,将这些参数视为模型输入,并将处理后的乳腺癌细胞的细胞生存力作为模型输出。结果,GNP的物理和化学性质以及它们的使用条件对细胞毒性产生影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。测量了GNP的最大波长吸光度(MAW),辐照光束波长(IW)和光源功率密度(PD)。在该建模中,将这些参数视为模型输入,并将处理后的乳腺癌细胞的细胞生存力作为模型输出。结果,GNP的物理和化学性质以及它们的使用条件对细胞毒性产生影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。GNP的理化性质及其应用条件对细胞毒性有影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。GNP的理化性质及其应用条件对细胞毒性有影响。结果有助于选择这些纳米粒子在乳腺癌细胞的光疗中所需的条件。

更新日期:2020-10-30
down
wechat
bug