当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy
Surfaces and Interfaces ( IF 6.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.surfin.2020.100749
Katta Ramesh , Sami Ullah Khan , Mohammed Jameel , M. Ijaz Khan , Yu-Ming Chu , Seifedine Kadry

Abstract The progressed thermal features nano-materials with utilization of activation energy, thermal radiation and applied magnetic force allow an improved heat and mass transfer performance in various era of engineering, industries and technological processes. The energy production with cheap resources plays a renewable role in the countries industrial growth. This task has been effectively achieved with consideration of thermally enhanced nanoparticles. Moreover, the bioconvection phenomenon in nano-materials attributes a novel bio-technology applications like bio-sensors, enzymes, petroleum industry, bio-fuels and many more. Owing to such assistive a applications of nano-particles and bioconvection phenomenon, the investigation aim to analyze the rheological consequences of Maxwell nanofluid along with swimming of gyrotactic microorganisms configured by a Riga surface. The thermal radiation impact in form of nonlinear relations and activation energy influence are utilized in the energy and concentration equations, respectively. The convective-Nield boundary conditions help to determine the solution of governing equations. The numerical scheme namely shooting technique has been employed for the dimensionless equation's solution procedure. The influence of flow parameters achieved via formulations of equations is graphically underlined along with suitable physical justifications. The key observations for heat, mass and microorganism's transportations are summarized.

中文翻译:

由具有非线性热辐射和活化能的 Riga 表面配置的 Maxwell 纳米流体中的生物对流评估

摘要 利用活化能、热辐射和外加磁力的先进热特性纳米材料可以在工程、工业和技术过程的各个时代改善传热和传质性能。具有廉价资源的能源生产在国家工业增长中发挥着可再生的作用。考虑到热增强的纳米颗粒,这项任务已经有效地实现了。此外,纳米材料中的生物对流现象归因于新的生物技术应用,如生物传感器、酶、石油工业、生物燃料等等。由于纳米粒子和生物对流现象的这种辅助应用,该调查旨在分析 Maxwell 纳米流体的流变学后果以及由里加表面配置的回旋微生物的游动。能量方程和浓度方程分别利用非线性关系形式的热辐射影响和活化能影响。对流-尼尔德边界条件有助于确定控制方程的解。无量纲方程的求解过程采用了数值方案即射击技术。通过方程公式实现的流动参数的影响与适当的物理理由一起以图形方式强调。总结了对热量、质量和微生物传输的关键观察结果。能量方程和浓度方程分别利用非线性关系形式的热辐射影响和活化能影响。对流-尼尔德边界条件有助于确定控制方程的解。无量纲方程的求解过程采用了数值方案即射击技术。通过方程公式实现的流动参数的影响与适当的物理理由一起用图形强调。总结了对热量、质量和微生物传输的关键观察结果。能量方程和浓度方程分别利用非线性关系形式的热辐射影响和活化能影响。对流-尼尔德边界条件有助于确定控制方程的解。无量纲方程的求解过程采用了数值方案即射击技术。通过方程公式实现的流动参数的影响与适当的物理理由一起用图形强调。总结了对热量、质量和微生物传输的关键观察结果。无量纲方程的求解过程采用了数值方案即射击技术。通过方程公式实现的流动参数的影响与适当的物理理由一起用图形强调。总结了对热量、质量和微生物传输的关键观察结果。无量纲方程的求解过程采用了数值方案即射击技术。通过方程公式实现的流动参数的影响与适当的物理理由一起以图形方式强调。总结了对热量、质量和微生物传输的关键观察结果。
更新日期:2020-12-01
down
wechat
bug