当前位置: X-MOL 学术Theor. Comput. Sci. › 论文详情
Local distance constrained bribery in voting
Theoretical Computer Science ( IF 0.747 ) Pub Date : 2020-10-16 , DOI: 10.1016/j.tcs.2020.10.005
Palash Dey

Studying complexity of various bribery problems has been one of the main research focus in computational social choice. In all the models of bribery studied so far, the briber has to pay every voter some amount of money depending on what the briber wants the voter to report and the briber has some budget at her disposal. Although these models successfully capture many real world applications, in many other scenarios, the voters may be unwilling to deviate too much from their true preferences. In this paper, we study the computational complexity of the problem of finding a preference profile which is as close to the true preference profile as possible and still achieves the briber's goal subject to budget constraints. We call this problem Local Distance constrained $bribery. We consider three important measures of distances, namely, swap distance, footrule distance, and maximum displacement distance, and resolve the complexity of the optimal bribery problem for many common voting rules. We show that the problem is polynomial time solvable for the plurality and veto voting rules for all the three measures of distance. On the other hand, we prove that the problem is NP-complete for a class of scoring rules which includes the Borda voting rule, maximin, Copelandα for any α[0,1], and Bucklin voting rules for all the three measures of distance even when the distance allowed per voter is 1 for the swap and maximum displacement distances and 2 for the footrule distance even without the budget constraints (which corresponds to having an infinite budget). For the k-approval voting rule for any constant k>1 and the simplified Bucklin voting rule, we show that the problem is NP-complete for the swap distance even when the distance allowed is 2 and for the footrule distance even when the distance allowed is 4 even without the budget constraints. We complement these hardness results by showing that the problem for the k-approval and simplified Bucklin voting rules is polynomial time solvable for the swap distance if the distance allowed is 1 and for the footrule distance if the distance allowed is at most 3. For the k-approval voting rule for the maximum displacement distance for any constant k>1, and for the simplified Bucklin voting rule for the maximum displacement distance, we show that the problem is NP-complete (with the budget constraints) and, without the budget constraints, they are polynomial time solvable.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug