当前位置: X-MOL 学术Results Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of Respiratory Droplets Carrying SARS-CoV-2 Virus in Closed Atmosphere
Results in Physics ( IF 5.3 ) Pub Date : 2020-10-17 , DOI: 10.1016/j.rinp.2020.103482
Alireza Shadloo-Jahromi , Omid Bavi , Mohammad Hossein Heydari , Masoud Kharati-Koopaee , Zakieh Avazzadeh

From the epidemiological point of view, the lifetime of cough and sneeze droplets in the ambient atmosphere plays a significant role in the transmission rate of Coronavirus. The lifetime of indoor respiratory droplets, per se, is a function of droplet size, ambient temperature, and humidity. In the attempt to explore the effective factors of droplet lifetime, sufficient knowledge of atomic-scale interactions and dynamics of the droplet with themselves, as well as the airflow molecules in the room space, is necessary. In this study, the vertical traveling of a wide range (100 nm -10 μm) of representative carrier droplets is studied in three ambient temperatures of 258, 298, and 318 K using all-atom molecular dynamics simulation. Our obtained results confirm that by increasing the room temperature, the suspending time of aerosol (suspended droplets carrying virus particles) increases due to the higher dynamics of air and evaporated water molecules in room space. In fact, by increasing the indoor temperature, the collision rate of aerosol and ambient atmosphere molecules increases significantly. Our result shows this higher rate of collision could have a dual effect on the lifetime of aerosol considering the fact of faster deposition of larger (heavier) droplet due to the gravitational force. On one hand, in higher temperatures, the higher collision can split the droplets to smaller ones with a semi-permanent suspension period. On the other hand, the higher dynamics of ambient molecules can lead to meet and coalesce of smaller cough/sneeze droplets making larger (heavier) droplets with faster sediment times. So, the role of indoor humidity to fuel the probability of coalescence phenomenon and lifetime of droplets becomes more determinant in the warmer spaces.



中文翻译:

封闭环境中携带SARS-CoV-2病毒的呼吸液滴的动力学

从流行病学的角度来看,咳嗽和打喷嚏小滴在周围大气中的寿命在冠状病毒的传播速率中起着重要作用。室内呼吸液滴的寿命本身是液滴尺寸,环境温度和湿度的函数。在尝试探索液滴寿命的有效因素时,必须充分了解液滴本身与原子尺度的相互作用和动力学以及室内空间中的气流分子。在这项研究中,使用全原子分子动力学模拟研究了在258、298和318 K的三个环境温度下,代表性载流子液滴的宽范围(100 nm -10μm)的垂直传播。我们获得的结果证实,通过提高室温,由于室内空间中空气和蒸发水分子的动态变化较大,气溶胶(带有病毒颗粒的悬浮液滴)的悬浮时间会增加。实际上,通过提高室内温度,气溶胶与周围大气分子的碰撞速度显着提高。我们的结果表明,考虑到重力引起的较大(较重)液滴更快沉积的事实,较高的碰撞率可能会对气溶胶的寿命产生双重影响。一方面,在较高的温度下,较高的碰撞会以半永久性的悬浮周期将液滴分裂为较小的液滴。另一方面,环境分子的较高动力学可以导致较小的咳嗽/打喷嚏小滴遇到并合并,从而使较大(较重)的小滴具有更快的沉积时间。所以,

更新日期:2020-10-17
down
wechat
bug