当前位置: X-MOL 学术Mech. Res. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement
Mechanics Research Communications ( IF 2.4 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.mechrescom.2020.103604
Fei Xu 1 , Emily L Johnson 2 , Chenglong Wang 3 , Arian Jafari 2 , Cheng-Hau Yang 2 , Michael S Sacks 4, 5 , Adarsh Krishnamurthy 2 , Ming-Chen Hsu 2
Affiliation  

Abstract The left ventricle of the heart is a fundamental structure in the human cardiac system that pumps oxygenated blood into the systemic circulation. Several valvular conditions can cause the aortic and mitral valves associated with the left ventricle to become severely diseased and require replacement. However, the clinical outcomes of such operations, specifically the postoperative ventricular hemodynamics of replacing both valves, are not well understood. This work uses computational fluid–structure interaction (FSI) to develop an improved understanding of this effect by modeling a left ventricle with the aortic and mitral valves replaced with bioprostheses. We use a hybrid Arbitrary Lagrangian–Eulerian/immersogeometric framework to accommodate the analysis of cardiac hemodynamics and heart valve structural mechanics in a moving fluid domain. The motion of the endocardium is obtained from a cardiac biomechanics simulation and provided as an input to the proposed numerical framework. The results from the simulations in this work indicate that the replacement of the native mitral valve with a tri-radially symmetric bioprosthesis dramatically changes the ventricular hemodynamics. Most significantly, the vortical motion in the left ventricle is found to reverse direction after mitral valve replacement. This study demonstrates that the proposed computational FSI framework is capable of simulating complex multiphysics problems and can provide an in-depth understanding of the cardiac mechanics.

中文翻译:

生物瓣主动脉和二尖瓣置换术后左心室血流动力学的计算研究

摘要 心脏的左心室是人体心脏系统的基本结构,将含氧血液泵入体循环。几种瓣膜疾病会导致与左心室相关的主动脉瓣和二尖瓣病变严重,需要更换。然而,此类手术的临床结果,特别是更换两个瓣膜的术后心室血流动力学,尚不清楚。这项工作使用计算流体结构相互作用 (FSI),通过用生物假体代替主动脉瓣和二尖瓣来模拟左心室,从而更好地理解这种效应。我们使用混合任意拉格朗日-欧拉/浸没几何框架来适应运动流体域中心脏血流动力学和心脏瓣膜结构力学的分析。心内膜的运动是从心脏生物力学模拟中获得的,并作为所提出的数值框架的输入提供。这项工作的模拟结果表明,用三径向对称的生物瓣膜替换天然二尖瓣会显着改变心室血流动力学。最重要的是,在二尖瓣置换后,左心室的涡旋运动方向相反。这项研究表明,所提出的计算 FSI 框架能够模拟复杂的多物理场问题,并且可以提供对心脏力学的深入理解。心内膜的运动是从心脏生物力学模拟中获得的,并作为所提出的数值框架的输入提供。这项工作的模拟结果表明,用三径向对称的生物瓣膜替换天然二尖瓣会显着改变心室血流动力学。最重要的是,在二尖瓣置换后,左心室的涡旋运动方向相反。这项研究表明,所提出的计算 FSI 框架能够模拟复杂的多物理场问题,并且可以提供对心脏力学的深入理解。心内膜的运动是从心脏生物力学模拟中获得的,并作为所提出的数值框架的输入提供。这项工作的模拟结果表明,用三径向对称的生物瓣膜替换天然二尖瓣会显着改变心室血流动力学。最重要的是,在二尖瓣置换后,左心室的涡旋运动方向相反。这项研究表明,所提出的计算 FSI 框架能够模拟复杂的多物理场问题,并且可以提供对心脏力学的深入理解。这项工作的模拟结果表明,用三径向对称的生物瓣膜替换天然二尖瓣会显着改变心室血流动力学。最重要的是,在二尖瓣置换后,左心室的涡旋运动方向相反。这项研究表明,所提出的计算 FSI 框架能够模拟复杂的多物理场问题,并且可以提供对心脏力学的深入理解。这项工作的模拟结果表明,用三径向对称的生物瓣膜替换天然二尖瓣会显着改变心室血流动力学。最重要的是,在二尖瓣置换后,左心室的涡旋运动方向相反。这项研究表明,所提出的计算 FSI 框架能够模拟复杂的多物理场问题,并且可以提供对心脏力学的深入理解。
更新日期:2020-10-01
down
wechat
bug